Directors' Choice

Sidebar

Your papers could be selected as the Directors' Choice, too, if you correctly acknowledge the SD CFAR grant number and if your paper has a PubMed Central ID (PMCID)

August 2022

Zhou P, Song G, He WT, Beutler N, Tse LV, Martinez DR, Schafer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Yuan M, Liu H, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Wilson IA, Safonova Y, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. bioRxiv. 2022, 10.1101/2022.03.04.479488doi:10.1101/2022.03.04.479488; PMID35291291; PMC8923106.

About This Paper

Abstract: Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.

View other Directors' Choice selections from  201620172018201920202021, and 2022.

At a Glance