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In January 2015, an outbreak of undiagnosed human immunodeficiency virus (HIV) infections among persons who inject drugs 
(PWID) was recognized in rural Indiana. By September 2016, 205 persons in this community of approximately 4400 had received 
a diagnosis of HIV infection. We report results of new approaches to analyzing epidemiologic and laboratory data to understand 
transmission during this outbreak. HIV genetic distances were calculated using the polymerase region. Networks were generated 
using data about reported high-risk contacts, viral genetic similarity, and their most parsimonious combinations. Sample collection 
dates and recency assay results were used to infer dates of infection. Epidemiologic and laboratory data each generated large and 
dense networks. Integration of these data revealed subgroups with epidemiologic and genetic commonalities, one of which appeared 
to contain the earliest infections. Predicted infection dates suggest that transmission began in 2011, underwent explosive growth in 
mid-2014, and slowed after the declaration of a public health emergency. Results from this phylodynamic analysis suggest that the 
majority of infections had likely already occurred when the investigation began and that early transmission may have been associated 
with sexual activity and injection drug use. Early and sustained efforts are needed to detect infections and prevent or interrupt rapid 
transmission within networks of uninfected PWID.
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In response to the epidemic of prescription opioid abuse in the 
United States, pharmaceutical manufacturers have developed 
novel abuse-deterrent formulations [1]. Crush-resistant abuse-de-
terrent formulations were designed to discourage insufflation but, 
according to a recent study [2], may be associated with increased 
rates of injection. Injection of oxymorphone represents a multifac-
eted public health concern owing to its high potential for overdose 
and risk of exposure to blood-borne pathogens, such as human 
immunodeficiency virus (HIV). Persons who inject drugs (PWID) 
can mitigate these infectious risks by using sterile injection equip-
ment, such as that provided by syringe service programs (SSPs). 

However, SSPs are less common in rural than urban or suburban 
communities and are often explicitly prohibited by law [3].

In 2011, the Indiana State Department of Health investigated 
a small outbreak of hepatitis C among epidemiologically linked 
PWID in east central Indiana [4, 5]. In the summer of 2014, 
nearby Scott County was the epicenter of an unrelated outbreak 
among PWID that would become one of the largest HIV out-
breaks in the United States since the introduction of highly active 
antiretroviral treatment in the mid-1990s. PWID frequently 
shared injection equipment while injecting prescription oxymo-
rphone, driving the explosive growth of the HIV outbreak [6]. 
Within this community with high rates of unemployment and 
low high school graduation rates, exchange of sex for drugs or 
money (hereafter referred to as transactional sex) was reported 
by 25% of females infected with HIV who were part of the out-
break, and it likely contributed to the spread of HIV [7, 8].

The original epidemiologic investigation indicated that a 
single strain of HIV subtype B had spread rapidly within the 
community of PWID in Scott County [7]. Under conditions 
of rapid transmission, viral diversity is insufficient to infer spe-
cific transmission events from molecular sequence data alone. 
Even for rapidly evolving pathogens such as HIV, 2 individuals 
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infected by genetically identical viruses may never have been 
in direct contact [9, 10]. The likelihood that 2 infections repre-
sent a transmission pair can be augmented by a more holistic 
analysis of relevant data sources. The emerging field of phylo-
dynamics seeks to understand evolutionary processes through 
the integration of epidemiologic data (eg, behavioral risk factors 
and high-risk contacts identified through contact tracing) with 
biologic data (eg, immunologic response and pathogen genetic 
sequences). One goal of a phylodynamic analysis is to obtain 
an improved picture of the historical sequence of transmissions 
[11–14], represented as a network that, unlike a phylogeny, is di-
rectly comparable to contact networks. Phylodynamic methods 
have been used to define inclusion and exclusion criteria for an 
outbreak [15], prioritize resource allocation during tuberculosis 
outbreak investigations [16], assess the effectiveness of interven-
tion and prevention efforts [17–19], and predict [16] and identify 
[15] venues where public health interventions can be applied.

Transmission network analysis can provide public health offi-
cials with high-resolution information about transmission and 
drug resistance dynamics at global [20], national [21], and sub-
national [22, 23] levels. These data have been used to identify 
growing transmission clusters of concern, monitor transmission 
of antiretroviral drug resistance, prioritize high-risk groups for 
prevention efforts, and aid epidemiologic investigations [24–
27]. While transmission network analysis is a well-established 
complement to tuberculosis contact-tracing investigations [16, 
28, 29], it is a relatively new approach for HIV surveillance and 
outbreak investigation. We conducted phylodynamic analysis 
of epidemiologic, phylogenetic, and clinical laboratory data to 
infer and characterize the structure and growth rate of the re-
cent HIV outbreak in rural Indiana.

METHODS

The Centers for Disease Control and Prevention (CDC) gener-
ated HIV polymerase (pol) Sanger sequences from serum/plasma 
samples or received sequences from commercial laboratories 
from persons with a diagnosis of HIV infection who met the 
case definition for inclusion in the outbreak [6]. We used BLAST 
to compare pol sequences from these case patients against >1.2 
million HIV sequences from GenBank, commercial databases, 
and the CDC’s Molecular HIV Surveillance database [30] to de-
termine whether the outbreak sequence was closely related to 
any other sequences and, if so, the geographic location where 
those diagnoses occurred. Sequences were used to construct a 
phylogenetic tree by an approximately maximum-likelihood 
method (Supplementary Materials). Serum and plasma speci-
mens also underwent Bio-Rad avidity incidence (BRAI) testing 
to estimate the recency of infection (Supplementary Materials). 
Viral loads for HIV-infected cases and pol sequences for some 
cases were provided by 2 commercial laboratories (LabCorp 
and Quest Diagnostics). The Indiana Communicable Disease 

Reporting Rule requires that HIV-related data be reported by 
medical laboratories weekly to the Indiana State Department of 
Health. All HIV-positive case patients were interviewed by using 
a standardized form to ascertain sex and injection drug–using 
partners. To identify all potential at-risk persons within the 
community, individuals were also asked to name anyone who 
they believed might benefit from HIV testing.

Behavioral Contribution of Risk

The total number of high-risk sex, needle sharing, and both 
sex and needle sharing contacts a person reports can serve as a 
proxy measure of their exposure risk, regardless of that individ-
ual’s HIV status. These data can be represented as a contact net-
work in which individuals are nodes that are connected by lines 
corresponding to the type of contact. We also included each 
individual’s number of unique high-risk contacts, age, and sex 
as input variables to construct decision trees, which constitute 
a predictive machine learning method whose outcome variable 
was HIV status. A forest of decision trees was trained iteratively, 
using a random sample of 25% of these data. The remaining 75% 
were used to assess the sensitivity and specificity of the model 
classification. Decision tree analysis was used to identify simple 
demographic and behavior-based rules that were predictive of 
population-level HIV infection in this outbreak that could also 
inform future outbreak prevention, intervention, and investiga-
tion decision-making.

Genetic Distance Network

Genetic distance (d) was determined for all pairs of HIV pol 
sequences after codon alignment of each sequence to HIV_
HXB2 (GenBank accession number K03455), using a nucleo-
tide substitution model [20]. Genetic distance networks were 
constructed according to distances between pol sequences, 
wherein each sequence was linked to other closely related 
sequences [20]. We include distances between outbreak-associ-
ated sequences and references obtained from Indiana and sur-
rounding states between 2004 and 2015. Previously, a distance 
threshold of 1.5% was used to infer transmission, based on the 
finding of approximately 1% intrahost HIV subtype B diver-
gence in persons from the United States over a decade of infec-
tion [20]. Reliance on a single genetic distance threshold may 
artificially discard relevant genetic links. To incorporate both 
early and late transmissions, we constructed a minimum span-
ning tree (MST), which, similar to a phylogeny, is the minimum 
number of genetic links that still maintain connections between 
all nodes. An MST can be seen as the most parsimonious subset 
of genetic distances required to produce the complete network. 
There can be many equivalent MSTs for a given network, es-
pecially when distances are uniform. To account for this range 
of possibilities, we constructed many nonisomorphic (unique) 
MSTs for all genetic links with ≤1.5% distance, wherein edges 
were weighted by their frequency of occurrence across all MSTs.
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Inferred Transmission Network

We considered a report of high-risk contact between 2 HIV-
positive persons as a potential transmission event when the link 
corresponded to one found among the forest of MSTs. When an 
individual did not report a high-risk contact that corresponded 
to a well-supported genetic linkage found among the MSTs, 
their HIV pol sequence was linked to its closest genetic neigh-
bor, and that link was designated an unreported putative trans-
mission event. If there were multiple equidistant close genetic 
neighbors, those who appeared among all MSTs more than once 
were also included. If the closest genetic neighbor was another 
individual with no high-risk contacts, we included the link to 
the closest genetic neighbor who was already a member of the 
largest connected component.

Transmission Cluster Growth

Serological determination of recent HIV infection by measur-
ing antibody binding strength or avidity to HIV antigens has 
been used to measure incidence, understand transmission 
dynamics, and evaluate prevention strategies. One validated 
method for determining recent infection is the CDC-modified 
Bio-Rad HIV enzyme immunoassay (BRAI) that calculates an 
avidity index (Supplementary Materials) [31]. We developed 
a novel bioinformatics method to use avidity index scores to 
infer possible HIV infection dates. First, a k-means clustering 
method was used to define the distribution of 3 distinct clus-
ters of recency from the outbreak. The avidity index minima 
and maxima of each cluster of recency were then used to cre-
ate subsets of corresponding observations from separate lon-
gitudinal seroconversion cohorts of individuals [31–33] for 
whom the inferred date of detectable infection was the mid-
point between their dates of last negative and first positive 
HIV test result. The duration of recent infection for individ-
uals included in the seroconversion panel was defined as the 
difference between the sample collection date and the date of 
the last negative test result. For each outbreak-associated indi-
vidual, a duration of recent infection was assigned a randomly 
selected duration from the seroconversion cohort according to 
their respective recency cluster. An individual’s inferred date of 
infection is estimated by subtracting the simulated duration of 
recent infection from the specimen collection date. To directly 
compare the predicted incidence curve with the observed diag-
nosis curve, persons with inconclusive or missing avidity index 
results were randomly assigned a duration of recent infection 
from the entire seroconversion cohort. To account for stochas-
tic variation, these processes were repeated 1000 times to infer a 
best-fit epidemiological curve and its computed standard error. 
We used the R package EpiEstim [34] to infer the instantaneous 
reproduction number (ie, transmissibility at a certain time step) 
over a 30-day sliding window beginning in late 2014, under the 
assumption of a serial interval that is normally distributed with 
a mean and standard deviation of 1 week. Finally, we estimated 

the reproduction number (R0) of the outbreak by assuming that 
R c d0 = ⋅ ⋅τ , where τ  is the mean number of high-risk contacts 
infected with HIV divided by the mean number high-risk con-
tacts, c  is the mean number of high-risk contacts, and d  is the 
total duration of the outbreak [35].

RESULTS

Behavioral Contribution of Risk

Contact tracing yielded a network of 1060 high-risk linkages 
among 411 individuals, including 183 individuals who received 
a diagnosis of HIV infection during the outbreak investigation 
through 3 March 2016 (Supplementary Figure  1). Of these 
reported high-risk contacts, 79.2% (839) were injection drug 
users only, 7.9% (84) were sex partners only, and 12.9% (137) 
were sex partners and injection drug users (Figure 1). During 
the investigation, 1 person infected with HIV was found to have 
received a diagnosis of HIV infection nearly a decade prior; all 
other diagnoses occurred during or after November 2014.

The prevalence of self-reported injection drug use was 91.8% 
(168 of 183) among HIV-positive individuals and 86.6% (356 
of 411)  among all persons in the high-risk contact network. 
Persons who “would benefit from testing” (313 individuals) 
were the second most common contact type reported during the 
investigation. HIV-positive individuals were named as someone 
who “would benefit from testing” by persons with whom they 
did not have a high-risk contact at a rate 2.3 times that for those 
who tested negative for HIV (P < .01). When interviewed, 92.3% 
(60 of 65) who were identified as someone who “would benefit 
from testing” reported injection drug use in the prior year. The 

HIV infected

Uninfected

Node Color

IDU
Sex+IDU
Sexual

Total High-Risk Contacts56

Edge Color

Size Scale

Figure 1.  Contact tracing network, human immunodeficiency virus (HIV) outbreak, 
Scott County, Indiana, 2015. Each blue (uninfected) circle represents a person at 
high risk of HIV infection. Red circles represent HIV-positive individuals. Each circle 
is sized according to the number of high-risk contacts reported by the corresponding 
individual or partner, with scale shown in the figure. IDU, injection drug use contact; 
sex, sexual contact; sex+IDU, sexual and injection drug use contact.
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person with the earliest HIV diagnosis reported no high-risk 
contacts or injection drug use. However, this individual was 
identified to an outbreak investigator as someone who “would 
benefit from testing” by an individual who reported transac-
tional sex and 34 unique high-risk contacts; additionally, each 
person identified by this individual as someone who “would 
benefit from testing” eventually received a diagnosis of HIV 
infection. The distribution of injection drug–using contacts 
among HIV-infected persons (mean number [±SD], 4.1 ± 6.2) 
had a long tail owing to the 24.6% of persons (33 of 134) who 
reported a number of injection drug–using contacts that was at 
least 1 SD above the mean (ie, >10; Figure 2A).

Decision tree analysis yielded 5 terminal nodes in which 
individuals were grouped according to the number of high-
risk contacts (Figure 3]). Of 117 individuals who reported >3 
injection drug–using partners, 93.2% (109) were infected with 
HIV. Individuals with ≤3 injection drug–using partners were at 
much lower risk of HIV infection (16.8%; 73 of 435). However, 
48.7% of individuals (38 of 78) with ≤ 3 injection drug–using 
partners and at least 1 sex and injection drug–using partner 
had HIV infection. Finally, 87.1% of individuals (27 of 31) who 
reported 2–3 injection drug–using partners and at least 1 sex 
and injection drug–using partner had HIV infection.

Genetic Distance Network

Under a standard genetic distance threshold (d  ≤  1.5%) that 
was meant to capture potential transmission events in the last 
10 years [20, 36], the pol network consisted of 14 877 densely 
connected potential transmission pairs, resulting in a single, 
highly connected network component. Among these poten-
tial pairs, 3327 (22.4%) involved extremely close genetic link-
ages that represented approximately 1–2 base substitution(s) 
between sequences, based on a lower genetic distance thresh-
old (d ≤ 0.1%; Figure 4A), which confirmed that a single HIV 
strain was associated with the outbreak. Application of this 
lower threshold revealed community structure within the larg-
est connected component (NA = 72, NB = 23, and NC = 24) that 
corresponded to 3 subgroups identified in the phylogenetic tree 
(Figure 4B). While application of this strict threshold increased 
the resolution of the community structure, it also caused single-
tons and small clusters (size ≤5) to dissociate from the outbreak 
cluster.

Rather than retaining only genetic distances that fell below 
a threshold (Figure 5A), we also considered a forest of unique 
MSTs of all transmission pairs in which d ≤ 1.5%. The com-
posite of unique MSTs was strikingly similar to the  ≤  0.1% 
genetic distance network, with a few notable exceptions 
(Figure 5B). Perhaps most noticeable was the inclusion of the 
aforementioned singletons and small clusters into the 3 pre-
viously defined subgroups (NA = 75, NB = 25, and NC = 26) 
and the generation of 3 new subgroups (ND  =  7, NE  =  4, 
and NF  =  3). The pol sequence from the case diagnosed a 

decade prior clustered among an outlier subgroup (NO = 10 
sequences) that were most closely related to sequences in 
subgroup A, as well as the sequences identified to bridge 
subgroup A to subgroups B and C (Figure 5). Using a multi-
nomial regression model (Supplementary Materials), mem-
bers of subgroup B were more likely to report ≥2 concurrent 
sex partners (P  <  .10; Supplementary Table  1), relative to 
members of subgroup C. Subgroup O sequences fell between 
reference sequences obtained in Indiana between 2004 and 
2015 and all other sequences (Figure 5). Relative to subgroup 
C, members of subgroup O were more likely to report trans-
actional sex (P  <  .05) and >2 sexual contacts (P  <  .10) and 
more likely to report no injection drug use contacts (P < .10). 
Members of subgroup O were also more likely to be classi-
fied by recency testing as established infections (P  <  .10; 
Supplementary Table 1).

Inferred Transmission Network

The inferred transmission network, constructed from both 
the contact tracing and MST networks, consisted of 176 nodes 
connected by 303 potential transmission events, 52.3% (159) 
of which involved injection drug use only, 6.3% (19) involved 
sex and injection drug use, and 0.9% (3) involved sex only 
(Figure 5C); 40.6% of potential transmission events (123) did 
not have a corresponding epidemiological link and were des-
ignated unreported. The mean genetic distance between pol 
sequences of unreported links were differentiated by only 
approximately 1–2 mutations (d ≤ 0.1%). The majority of high-
risk contacts (66.0%; 460 of 697) between HIV-infected individ-
uals were not supported by a close genetic linkage found among 
all MSTs, as only 34% of high-risk partners were determined 
to be potential transmission partners. Subgroups B–F could be 
characterized by a single bridging sequence that separated their 
members from subgroup A. Subgroup O, which contained the 
sequence from the earliest known HIV diagnosis received by a 
case patient, was not differentiated from subgroup A  because 
there were 8 potential transmission links between subgroups O 
and A, of which 3 were designated unreported.

Inferred Dates of Infection

BRAI were separated into 3 categories (center points,  8.0, 
60.4, and 97.6) by k-means clustering analysis. Using these 3 
categories, we randomly drew dates of seroconversion linked 
empirically to BRAI values in an iterative process to derive 
the incidence curve for the outbreak. Predicted transmis-
sion events began in 2011 and reached an exponential growth 
phase by mid-2014 (Figure 6). By the date of the first diagnosis 
in late 2014, 41% of persons (75 of 183) who would receive a 
diagnosis of HIV infection in 2015 were already seropositive. 
By 26 March 2015, the observed inflection point of the diag-
nosis curve and the date that the governor of Indiana declared 
a state public health emergency, >80% of the HIV infections 
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that would eventually be diagnosed and included in this anal-
ysis had already occurred. The estimated R0 was 3.8, suggesting 
that a reduction of overall transmissibility by 75% is required 
to prevent an outbreak of this scale. A separate analysis of the 
outbreak’s growth potential illustrated that the instantaneous 
reproduction number fell below the epidemic threshold (ie, it 
was <1; Supplementary Figure  2), just 3 weeks after the state 
public health emergency was declared and as the syringe ex-
change program launched. This finding suggests that awareness 

of the outbreak, initiation of SSPs, and availability of additional 
healthcare resources may have curtailed new infections.

DISCUSSION

Pathogen sequence data are traditionally represented as a phy-
logenetic tree, but this approach does not integrate potentially 
useful epidemiologic information about high-risk contacts of 
case patients that are gathered routinely during outbreak inves-
tigations. By representing genetic differences between viruses 
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as a network, these data can be directly mapped onto epide-
miologic evidence. We found that, under conditions of recent 
and rapid HIV transmission, as occurred in this outbreak and 
as evidenced by minimal viral diversity, incidence testing, and 
outbreak simulations, a relaxed genetic distance threshold of 
1.5% is too inclusive to discern specific transmission events. 

However, reduction of this inclusion threshold to 0.1% un-
necessarily sacrificed links that may represent the earliest 
infections that were phylogenetically and epidemiologically 
linked to the outbreak. To overcome this limitation, we char-
acterized transmission patterns by comparing only the most 
parsimonious genetic links among high-risk contacts. Owing 

Size Scale
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D E F Ref

Total high-risk contacts56

Figure 4.  Human immunodeficiency virus (HIV) polymerase (pol) sequence analyses. Genetic subgroups in the phylogeny (branches) and network (nodes) are colored 
as shown in the key. A, Phylogeny of 183 HIV pol sequences, colored by genetic subgroup, from the Indiana outbreak and local Indiana reference pol sequences (gray). 
Phylogenetic analyses were conducted using FastTree maximum likelihood analysis. Circles are sized according to the corresponding individual’s number of reported high-
risk contacts. Confidence values for branching patterns were assessed by using the Shimodaira-Hasegawa (sh) test and are given as probabilities at nodes (*, sh > 0.80; ◊, 
sh > 0.90). B, Genetic distance (d) network, using a d threshold of ≤0.1%. Ref, reference.
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is statistically significant (P < .05). IDU, injection drug use contacts; sex, sexual contacts; sex+IDU, sexual and injection drug use contacts.
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to inherent biases in self-reported data about socially sensi-
tive topics (ie, sexual behavior and illegal injection of drugs), 
the existence or absence of any link cannot be confirmed. 
The distinct subgroups we identified in the genetic and trans-
mission networks were likely the result of a combination of 
geographic, social, and temporal factors. The presence of dis-
crete subgroups suggests that the prevention of explosive HIV 
transmission is difficult but that, if detected sufficiently early, 
there may be subsequent transmission bottlenecks where 

application of targeted preventive strategies, such as SSPs, can 
interrupt transmission.

Integration of epidemiologic and laboratory data in a phylo-
dynamic model facilitated a deeper understanding of HIV trans-
mission dynamics in an outbreak among PWID in rural America, 
where an unprecedented epidemic of opioid and heroin abuse 
and injection drug use is growing. We demonstrated that reports 
of high-risk contact collected by disease investigation specialists 
can be integrated with pathogen sequence data to efficiently focus 
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Figure 5.  Genetic distance and inferred human immunodeficiency virus (HIV) transmission networks. Circles represent a polymerase (pol) sequence isolated from an HIV-
infected person. Lines represent close genetic links between HIV sequences. Genetic subgroups in the network (nodes) are colored as shown in the key. A, HIV pol genetic 
distance (d) network, using a d cutoff of ≤1.5%. B, Nonisomorphic minimum spanning trees (MSTs) of the HIV pol genetic distance network. C, Inferred transmission network 
based on the synthesis of the pol genetic distance network in panel A and the MSTs in panel B. Lines represent inferred transmission events, with the thickness proportional 
to 1.0 – d. Bridge, sequence from person in network linking genetic subgroups; CSW, commercial sex worker contact and/or transactional sexual contact; earliest observed 
diagnosis, person in network identified during outbreak investigation who had the earliest HIV infection diagnosis; IDU, injection drug use; unreported, contact information 
not reported.
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panel on right shows an expanded view of results on the timeline during the first half of 2015.
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contact-tracing efforts on putative transmission events. We used 
a novel bioinformatics method that uses biomarker incidence 
results (ie, HIV recency testing) to quantify both the transmission 
cluster’s growth rate and infer the potential period in which the 
outbreak began. We found that transmission of a single geograph-
ically localized strain of HIV may have begun as early as 2011 and 
that the majority of infections had likely already occurred prior to 
the declaration of a state public health emergency. We also deter-
mined that persons infected with HIV in one genetic subgroup 
were among the earliest individuals infected during the outbreak. 
These same individuals were characterized as more likely to en-
gage in high-risk sexual behavior than to use injection drugs. 
When coupled with the lack of self-reported injection drug use 
behavior by the person with the earliest diagnosis of HIV infec-
tion, these findings suggest that high-risk sexual contact was the 
most plausible route by which HIV was introduced into this pop-
ulation of PWID. Subgroups in the transmission network were 
largely similar with respect to demographic composition and 
high-risk behaviors, although one subgroup reported more con-
current high-risk partners. Taken together, these results demon-
strate that an integrated phylodynamic approach, if applied in a 
timely fashion, can provide deeper information about the spread 
of infection, including both the historical and future trajectories 
of an outbreak that may allow prevention strategies to be tailored 
more rapidly and specifically to a community’s needs. Automation 
of such analyses could provide actionable and timely intelligence 
to aid decision making by public health experts in the field.

In summary, we have demonstrated the utility of combining 
epidemiologic and laboratory data in a phylodynamic analysis to 
characterize an outbreak of HIV infections in a rural community of 
PWIDs that was initiated by a single strain of HIV. Our findings and 
methods may benefit future outbreak investigations by identifying, 
in near real-time and interactive fashion, subgroups or individuals 
at greatest risk for onward transmission of the pathogen and poten-
tial bridge individuals who could be prioritized for intervention as 
the outbreak evolves. We have also described a novel bioinformatic 
method based on a recency assay used to infer dates of HIV sero-
conversion. With this approach, we showed that the majority of 
HIV infections in the outbreak likely occurred prior to the decla-
ration of a state public health emergency that included an SSP for 
affected counties. Had an SSP been in place prior to recognition of 
the outbreak, the explosive phase of the outbreak may have been 
blunted. Evolving changes in federal and state laws for SSPs will 
improve efforts to prevent similar outbreaks in the future [37]. As 
the heroin and opioid epidemic continues to worsen in the United 
States, it is imperative that susceptible populations are protected 
and outbreaks are quickly identified and intervened upon to pre-
vent resurgence and rapid growth of injection drug use–associated 
HIV infections. Initiation or expansion of test-and-treat strategies 
for HIV and hepatitis virus infections in these opioid-epidemic 
areas affecting mostly rural populations not previously considered 
vulnerable to these conditions may expedite prevention efforts.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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