Poster 391 Session P-F4

CROI 2015
Seattle, WA
February 23-26

Influenza Vaccination Increases HIV-1 Transcription During Antiretroviral Therapy Christina Yek¹, S Gianella¹, M Plana², P Castro³, K Scheffler¹, F García⁴, M Massanella¹, DM Smith^{1,5}

¹University of California San Diego, La Jolla, CA, USA, ²Retrovirology and Viral Immunopathology Laboratories, Hospital Clínic, University of Barcelona, Barcelona, Spain ³Medical Intensive Care Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain ⁵Veterans Affairs San Diego Healthcare System, San Diego, CA, USA

Background

- ► The latent HIV-1 reservoir is widely recognized as the major barrier to eradication¹.
- Many curative strategies aim to reactivate latent virus, thereby exposing it to targeted therapy and facilitating clearance of the reservoir².
- Stimulators such as histone deacetylase inhibitors, disulfiram and IL-7 have thus far demonstrated only modest activity, often at the expense of considerable toxicity.
- In contrast, transient increases in viremia have been observed after administration of standard vaccines even during antiretroviral therapy (ART)^{3,4}.
- Clinically-approved vaccines present minimal side effects and long-term risks even in HIV-1 infected individuals.

Objective

To study the effect of routine vaccination on HIV reservoir dynamics in peripheral blood mononuclear cells

Methods

- ► Clinical Trial Design: A randomized clinical trial (NCT00329251) was conducted to study the effects of a vaccination schedule on viral rebound and immune function after structured treatment interruption. Participants were randomized to receive a vaccination schedule (n=13) or placebo (n=13). The vaccination schedule involved 7 clinically-approved vaccines given over the course of 12 months (Figure 1). Inclusion criteria for the trial were:
- HIV-1 infected individuals on ART for ≥1 year,
- CD4 T-cell counts >500cells/µl for ≥6 months,
- Nadir CD4 count >300 cells/μl,
- Plasma viral load (VL) <200 copies/ml for ≥6 months,
- Pre-treatment VL >5000copies/ml.
- ▶ Vaccination: Vaccinees received Hepatitis B (Engerix-B, GlaxoSmithKline), Influenza (A/New Caledonia/20/99 (H1N1), A/Moscow/10/99 (H3N2), and B/Hong Kong/330/2001), Pneumococcus (Pneumo 23, Sanofi Pasteur MSD), Hepatitis A (Havrix 1440, GlaxoSmithKline), Varicella (Varilrix, GlaxoSmithKline), Measles-Mumps-Rubella (Priorix, GlaxoSmithkline) and Tetanus toxoid-Diphtheria toxoid vaccines (Ditanrix Adult, GlaxoSmithKline). Controls (n=11) received placebo injections (0.5ml saline solution) at equivalent timepoints.
- ▶ DNA and RNA Extraction: Cryopreserved peripheral blood mononuclear cells (PBMCs) from timepoints immediately pre- and 1 month post-vaccination were viably thawed. DNA and RNA were extracted using a Qiagen AllPrep DNA/RNA Mini Kit.
- ► HIV DNA and RNA Quantification: <u>HIV DNA</u>: DNA samples were digested with BanII restriction enzyme at 37°C for 1 hour. Droplet digital PCR (ddPCR) was performed with the following primer/probe combinations (900nM primers, 250nM probes): gag HEX-Zen and 2LTR FAM-Zen for HIV DNA and RPP30 HEX-Zen for host genomic DNA (for normalization).

Cell-associated RNA (caRNA): RNA was converted to cDNA with reverse transcriptase iScript (Biorad). ddPCR was performed with primer/probes *gag* HEX for unspliced mRNA (usRNA), *tat-rev* FAM for multispliced mRNA (msRNA), and *polyA* FAM for fully elongated and correctly processed HIV-1 mRNA. DNA and RNA values were adjusted for percentage of CD4 T cells as measured by flow cytometry.

► Flow Cytometry: Cell counting and immunophenotyping for T-cell markers (CD3, CD45, CD4, CD8) were performed by flow cytometry.

Results

Study Characteristics

Table 1: Baseline characteristics
Vaccinees and controls were not significantly different at baseline.

	Vaccinees (n=13)	Controls (n=13)
Age, Years, Median [IQR]	38 [29-41]	40 [38-52]
Males, n (%)	11 (85)	10 (77)
Risk Factor, n (%)		
Homosexual	9 (69)	5 (38)
Heterosexual	4 (31)	5 (38)
IVDU	0	3 (23)
Estimated Duration of HIV-1 Infection, Years, Median [IQR]	4.6 [2.1-7.9]	6.6 [3.3-11.0]
Time on ART, Years, Median [IQR]	1.4 [1.2-4.6]	4.5 [1.6-6.3]
ART		
NNRTI-based regimen, n (%)	3 (31)	7 (54)
PI-based regimen, n (%)	10 (69)	5 (38)
3-drug regimen, n (%)	0	1 (8)
Nadir CD4 T-cell Count, Cells/µl, Median [IQR]	414 [373-514]	411 [384-530]
Absolute CD4 T-cell Count at Month 0, Cells/µl, Median [IQR]	987 [767-1072]	898 [712-1073]
Plasma Viral Load at Month 0, log ₁₀ copies/ml, Median [IQR]	1.28 [1.28-1.28]	1.28 [1.28-1.4]

Figure 1: Vaccination schedule timeline

Hep A, B= Hepatitis A, B; VZV= Varicella; MMR= Measles-Mumps-Rubella;

TD= Tetanus toxoid-Diphtheria toxoid.

TD= Tetanus toxoid-Diphth	eria toxoid.			
•	/accinees (n)	Controls (n)	Median fold- change (gag)	p-value
Influenza/ Hep B	12	11	2.4	0.02
Pneumococcus/ Hep B	8	1	7.0	0.04
VZV/ Hep A	10	6	1.6	0.06
VZV/ Hep B	8	4	0.5	0.38
MMR	12	9	1.1	0.97
TD	9	11	1.3	0.50

Table 2: Summary of individual vaccines
Samples available for each timepoint (n) and results for vaccine arm (median fold-change in *gag* transcripts after vaccination); p-value of Wilcoxon test.

HIV caRNA Increased after Influenza and Pneumococcus Vaccinations

Figure 2: Absolute changes in HIV caRNA after Influenza and Pneumococcus vaccinations

Cell-associated HIV RNA (HIV caRNA) before and 1 month after Influenza (A-C) and Pneumococcus (D-F) vaccinations, respectively. Points represent single subjects with color-coding preserved throughout (A, D, E). p-values of Wilcoxon and Mann-Whitney tests for paired (A, B, D, E) and unpaired samples (B), respectively Number of participants with increase, decrease or no change in measured transcripts (gag, tat-rev, polyA) after Influenza (C) and Pneumococcus (F) vaccinations.

	Influenza			Pneumococcus		
Transcript	gag	tat-rev	polyA	gag	tat-rev	polyA
Median	2.44	0	3.73	7.04	0	20.94
IQ Range	1.3 - 7.4	0 - 1.4	0 - 12.6	2.4 - 22.7	0 - 23.5	3.0 - 79.7

Table 3: Fold-changes in HIV caRNA after vaccination

Overall median fold-changes with interquartile ranges (IQ range) for gag, tat-rev and polyA transcripts after Influenza and Pneumoccous vaccinations (vaccinees).

► There were no significant changes in HIV DNA or plasma HIV RNA after vaccination.

- ► Intra-host HIV RNA transcripts behaved differently:
- gag was detectable in 28 of 32 samples.
- tat-rev was least sensitive (undetectable in 11 samples).
- polyA was undetectable in 10 samples, but when detected showed the largest changes (Table 3).
- gag and polyA transcripts were significantly correlated for both Influenza (p=0.003) and Pneumococcus (p=0.02) vaccines.
- tat-rev did not correlate with either gag or polyA.

Results

Multiple Vaccines have Cumulative Effect

Figure 3: Changes in HIV cell-associated gag transcripts over study period
gag usRNA transcripts in vaccinees (A) over study period; solid black line represents median cohort values, black
arrows denote vaccination timepoints. Comparison of vaccinated versus control subjects (B, table inset) using aver-
age effect per vaccine (or placebo) calculated by multiple regression of logdomain gag usRNA levels onto predictor
variables representing vaccine boost and temporal decay; regression coefficient with interquartile range represented
in (B), p-values compare between groups (B) or single groups to null hypothesis (table).

Conclusions

- Influenza and Pneumococcus vaccinations were associated with significant increases in HIV caRNA during suppressive ART.
- Although no changes in HIV caRNA were seen with individual Hep A, VZV, MMR or TD vaccines, sequential administration led to overall significant effects of vaccination.
- Levels of HIV caRNA vary amongst unspliced, multi-spliced and overall transcripts (as measured by polyA), possibly reflecting different assay sensitivities.
- Plasma viral loads, total HIV DNA and 2-LTR circle copies did not change significantly after vaccination, reflecting successful suppression of *de novo* infection by ART.
- Routine vaccination is unlikely to present a cure for HIV-1 infection. Nevertheless, our findings suggest that multiple sequential immune stimulatory "hits" may act syngeristically to reactivate latent HIV and may be important in future curative strategies.

References

¹Siliciano JD, *et al*. Nat Med 2003;9(6):727-8. ³Stanley SK, *et al*. N Engl J Med 1996;334:1222-9. ²Deeks SG, *et al.* Nature 2012;487:439-40. ⁴Brichacek B, *et al.* J Infect Dis 1996;174(6):1191-9.

Acknowledgements

This work was supported in part by grants NIH Al100665, NIH DA034978, NIH Al036214, IS-CIII-RETIC RD06/006, FIPSE 36536/05, SAF 05/05566, FIS Pl050058, FIT 090100-2005-9, FIS Pl050265 and FIS 04/0503. Most importantly, we would like to thank all the patients!

Poster 391 Session P-F4

CROI 2015
Seattle, WA
February 23-26

Influenza Vaccination Increases HIV-1 Transcription During Antiretroviral Therapy Christina Yek¹, S Gianella¹, M Plana², P Castro³, K Scheffler¹, F García⁴, M Massanella¹, DM Smith^{1,5}

¹University of California San Diego, La Jolla, CA, USA, ²Retrovirology and Viral Immunopathology Laboratories, Hospital Clínic, University of Barcelona, Barcelona, Spain ³Medical Intensive Care Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain ⁵Veterans Affairs San Diego Healthcare System, San Diego, CA, USA

Background

- ► The latent HIV-1 reservoir is widely recognized as the major barrier to eradication¹.
- Many curative strategies aim to reactivate latent virus, thereby exposing it to targeted therapy and facilitating clearance of the reservoir².
- Stimulators such as histone deacetylase inhibitors, disulfiram and IL-7 have thus far demonstrated only modest activity, often at the expense of considerable toxicity.
- In contrast, transient increases in viremia have been observed after administration of standard vaccines even during antiretroviral therapy (ART)^{3,4}.
- Clinically-approved vaccines present minimal side effects and long-term risks even in HIV-1 infected individuals.

Objective

To study the effect of routine vaccination on HIV reservoir dynamics in peripheral blood mononuclear cells

Methods

- ► Clinical Trial Design: A randomized clinical trial (NCT00329251) was conducted to study the effects of a vaccination schedule on viral rebound and immune function after structured treatment interruption. Participants were randomized to receive a vaccination schedule (n=13) or placebo (n=13). The vaccination schedule involved 7 clinically-approved vaccines given over the course of 12 months (Figure 1). Inclusion criteria for the trial were:
- HIV-1 infected individuals on ART for ≥1 year,
- CD4 T-cell counts >500cells/µl for ≥6 months,
- Nadir CD4 count >300 cells/μl,
- Plasma viral load (VL) <200 copies/ml for ≥6 months,
- Pre-treatment VL >5000copies/ml.
- ▶ Vaccination: Vaccinees received Hepatitis B (Engerix-B, GlaxoSmithKline), Influenza (A/New Caledonia/20/99 (H1N1), A/Moscow/10/99 (H3N2), and B/Hong Kong/330/2001), Pneumococcus (Pneumo 23, Sanofi Pasteur MSD), Hepatitis A (Havrix 1440, GlaxoSmithKline), Varicella (Varilrix, GlaxoSmithKline), Measles-Mumps-Rubella (Priorix, GlaxoSmithkline) and Tetanus toxoid-Diphtheria toxoid vaccines (Ditanrix Adult, GlaxoSmithKline). Controls (n=11) received placebo injections (0.5ml saline solution) at equivalent timepoints.
- ▶ DNA and RNA Extraction: Cryopreserved peripheral blood mononuclear cells (PBMCs) from timepoints immediately pre- and 1 month post-vaccination were viably thawed. DNA and RNA were extracted using a Qiagen AllPrep DNA/RNA Mini Kit.
- ► HIV DNA and RNA Quantification: <u>HIV DNA</u>: DNA samples were digested with BanII restriction enzyme at 37°C for 1 hour. Droplet digital PCR (ddPCR) was performed with the following primer/probe combinations (900nM primers, 250nM probes): gag HEX-Zen and 2LTR FAM-Zen for HIV DNA and RPP30 HEX-Zen for host genomic DNA (for normalization).

Cell-associated RNA (caRNA): RNA was converted to cDNA with reverse transcriptase iScript (Biorad). ddPCR was performed with primer/probes *gag* HEX for unspliced mRNA (usRNA), *tat-rev* FAM for multispliced mRNA (msRNA), and *polyA* FAM for fully elongated and correctly processed HIV-1 mRNA. DNA and RNA values were adjusted for percentage of CD4 T cells as measured by flow cytometry.

► Flow Cytometry: Cell counting and immunophenotyping for T-cell markers (CD3, CD45, CD4, CD8) were performed by flow cytometry.

Results

Study Characteristics

Table 1: Baseline characteristics
Vaccinees and controls were not significantly different at baseline.

	Vaccinees (n=13)	Controls (n=13)
Age, Years, Median [IQR]	38 [29-41]	40 [38-52]
Males, n (%)	11 (85)	10 (77)
Risk Factor, n (%)		
Homosexual	9 (69)	5 (38)
Heterosexual	4 (31)	5 (38)
IVDU	0	3 (23)
Estimated Duration of HIV-1 Infection, Years, Median [IQR]	4.6 [2.1-7.9]	6.6 [3.3-11.0]
Time on ART, Years, Median [IQR]	1.4 [1.2-4.6]	4.5 [1.6-6.3]
ART		
NNRTI-based regimen, n (%)	3 (31)	7 (54)
PI-based regimen, n (%)	10 (69)	5 (38)
3-drug regimen, n (%)	0	1 (8)
Nadir CD4 T-cell Count, Cells/µl, Median [IQR]	414 [373-514]	411 [384-530]
Absolute CD4 T-cell Count at Month 0, Cells/µl, Median [IQR]	987 [767-1072]	898 [712-1073]
Plasma Viral Load at Month 0, log ₁₀ copies/ml, Median [IQR]	1.28 [1.28-1.28]	1.28 [1.28-1.4]

Figure 1: Vaccination schedule timeline

Hep A, B= Hepatitis A, B; VZV= Varicella; MMR= Measles-Mumps-Rubella;

TD= Tetanus toxoid-Diphtheria toxoid.

TD= Tetanus toxoid-Diphth	eria toxoid.			
•	/accinees (n)	Controls (n)	Median fold- change (gag)	p-value
Influenza/ Hep B	12	11	2.4	0.02
Pneumococcus/ Hep B	8	1	7.0	0.04
VZV/ Hep A	10	6	1.6	0.06
VZV/ Hep B	8	4	0.5	0.38
MMR	12	9	1.1	0.97
TD	9	11	1.3	0.50

Table 2: Summary of individual vaccines
Samples available for each timepoint (n) and results for vaccine arm (median fold-change in *gag* transcripts after vaccination); p-value of Wilcoxon test.

HIV caRNA Increased after Influenza and Pneumococcus Vaccinations

Figure 2: Absolute changes in HIV caRNA after Influenza and Pneumococcus vaccinations

Cell-associated HIV RNA (HIV caRNA) before and 1 month after Influenza (A-C) and Pneumococcus (D-F) vaccinations, respectively. Points represent single subjects with color-coding preserved throughout (A, D, E). p-values of Wilcoxon and Mann-Whitney tests for paired (A, B, D, E) and unpaired samples (B), respectively Number of participants with increase, decrease or no change in measured transcripts (gag, tat-rev, polyA) after Influenza (C) and Pneumococcus (F) vaccinations.

	Influenza			Pneumococcus		
Transcript	gag	tat-rev	polyA	gag	tat-rev	polyA
Median	2.44	0	3.73	7.04	0	20.94
IQ Range	1.3 - 7.4	0 - 1.4	0 - 12.6	2.4 - 22.7	0 - 23.5	3.0 - 79.7

Table 3: Fold-changes in HIV caRNA after vaccination

Overall median fold-changes with interquartile ranges (IQ range) for gag, tat-rev and polyA transcripts after Influenza and Pneumoccous vaccinations (vaccinees).

► There were no significant changes in HIV DNA or plasma HIV RNA after vaccination.

- ► Intra-host HIV RNA transcripts behaved differently:
- gag was detectable in 28 of 32 samples.
- tat-rev was least sensitive (undetectable in 11 samples).
- polyA was undetectable in 10 samples, but when detected showed the largest changes (Table 3).
- gag and polyA transcripts were significantly correlated for both Influenza (p=0.003) and Pneumococcus (p=0.02) vaccines.
- tat-rev did not correlate with either gag or polyA.

Results

Multiple Vaccines have Cumulative Effect

Figure 3: Changes in HIV cell-associated gag transcripts over study period
gag usRNA transcripts in vaccinees (A) over study period; solid black line represents median cohort values, black
arrows denote vaccination timepoints. Comparison of vaccinated versus control subjects (B, table inset) using aver-
age effect per vaccine (or placebo) calculated by multiple regression of logdomain gag usRNA levels onto predictor
variables representing vaccine boost and temporal decay; regression coefficient with interquartile range represented
in (B), p-values compare between groups (B) or single groups to null hypothesis (table).

Conclusions

- Influenza and Pneumococcus vaccinations were associated with significant increases in HIV caRNA during suppressive ART.
- Although no changes in HIV caRNA were seen with individual Hep A, VZV, MMR or TD vaccines, sequential administration led to overall significant effects of vaccination.
- Levels of HIV caRNA vary amongst unspliced, multi-spliced and overall transcripts (as measured by polyA), possibly reflecting different assay sensitivities.
- Plasma viral loads, total HIV DNA and 2-LTR circle copies did not change significantly after vaccination, reflecting successful suppression of *de novo* infection by ART.
- Routine vaccination is unlikely to present a cure for HIV-1 infection. Nevertheless, our findings suggest that multiple sequential immune stimulatory "hits" may act syngeristically to reactivate latent HIV and may be important in future curative strategies.

References

¹Siliciano JD, *et al*. Nat Med 2003;9(6):727-8. ³Stanley SK, *et al*. N Engl J Med 1996;334:1222-9. ²Deeks SG, *et al.* Nature 2012;487:439-40. ⁴Brichacek B, *et al.* J Infect Dis 1996;174(6):1191-9.

Acknowledgements

This work was supported in part by grants NIH Al100665, NIH DA034978, NIH Al036214, IS-CIII-RETIC RD06/006, FIPSE 36536/05, SAF 05/05566, FIS Pl050058, FIT 090100-2005-9, FIS Pl050265 and FIS 04/0503. Most importantly, we would like to thank all the patients!

