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Abstract

The phenotypic characterization of the cells in which HIV persists during antiretroviral ther-

apy (ART) remains technically challenging. We developed a simple flow cytometry-based

assay to quantify and characterize infected cells producing HIV proteins during untreated

and treated HIV infection. By combining two antibodies targeting the HIV capsid in a stan-

dard intracellular staining protocol, we demonstrate that p24-producing cells can be

detected with high specificity and sensitivity in the blood from people living with HIV. In

untreated individuals, the frequency of productively infected cells strongly correlated with

plasma viral load. Infected cells preferentially displayed a transitional memory phenotype

and were enriched in Th17, peripheral Tfh and regulatory T cells subsets. These cells also

preferentially expressed activation markers (CD25, HLA-DR, Ki67), immune checkpoint

molecules (PD-1, LAG-3, TIGIT, Tim-3) as well as the integrins α4β7 and α4β1. In virally

suppressed individuals on ART, p24-producing cells were only detected upon stimulation

(median frequency of 4.3 p24+ cells/106 cells). These measures correlated with other

assays assessing the size of the persistent reservoir including total and integrated HIV

DNA, Tat/rev Induced Limiting Dilution Assay (TILDA) and quantitative viral outgrowth

assay (QVOA). In ART-suppressed individuals, p24-producing cells preferentially displayed

a transitional and effector memory phenotype, and expressed immune checkpoint mole-

cules (PD-1, TIGIT) as well as the integrin α4β1. Remarkably, α4β1 was expressed by more

than 70% of infected cells both in untreated and ART-suppressed individuals. Altogether,

these results highlight a broad diversity in the phenotypes of HIV-infected cells in treated

and untreated infection and suggest that strategies targeting multiple and phenotypically

distinct cellular reservoirs will be needed to exert a significant impact on the size of the

reservoir.
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Author summary

HIV persists in a small pool of infected CD4+ T cells during ART. A better characteriza-

tion of these cells is a pre-requisite to the development of HIV eradication strategies. We

developed a novel assay, named HIV-Flow, to simultaneously quantify and characterize

reservoir cells in individuals receiving ART. With this assay, we found that a median of

only 5 cells/million have the ability to produce the HIV protein Gag in individuals on sup-

pressive ART. These frequencies correlated with other assays aimed at measuring HIV

reservoirs. Importantly, we show that the HIV reservoir is phenotypically diverse, with

numerous cell subsets contributing to the pool of persistently infected cells. Nonetheless,

we identified several markers preferentially expressed at the surface or these rare reservoir

cells, including immune checkpoint molecules and homing receptors. By combining

these markers, we identified discrete cellular subsets highly enriched in HIV-infected

cells. This novel assay will facilitate the identification of markers expressed by cellular

HIV reservoirs.

Introduction

The persistence of a small pool of infected CD4+ T cells displaying a memory phenotype is

one of the major hurdles to HIV eradication [1–4]. This persistent viral reservoir is established

during the early phase of infection and decays slowly over time [5–7]: more than 70 years of

continuous ART would be required to completely purge this small pool of infected cells [8–

10]. Therefore, additional therapeutic approaches specifically targeting persistently infected

CD4+ T cells are needed to achieve a cure [11]. The development of such targeted strategies

requires a deeper characterization of the nature of the cells in which HIV persists during pro-

longed ART.

A cellular marker that would identify HIV-infected cells with high specificity is still lacking.

Although CD32a was originally proposed as a specific marker that highly enriches in HIV-

infected cells in individuals on ART [12], recent studies challenged these findings [13–18].

Other cellular markers preferentially expressed by persistently infected cells have been

reported, including CD30, CD2, PD-1, LAG-3, TIGIT and CTLA-4 [19–22]. However, these

markers do not specifically identify infected cells and do not capture the entire pool of HIV

reservoir cells. Similarly, several cell subsets were demonstrated to be enriched in HIV, includ-

ing Tregs [23], Tfh cells [24, 25] and Th17 cells [26, 27].

Several assays have been developed to measure the frequency of infected cells in ART-sup-

pressed individuals [28, 29]. Since the majority of viral genomes are defective [30], PCR-based

assays measuring the frequencies of cells harboring HIV DNA overestimate the size of the rep-

lication-competent reservoir [31]. Of note, these defective proviruses are generated during the

first rounds of viral replication following transmission, indicating that HIV DNA measure-

ments may overestimate the size of the reservoir even in individuals who received ART during

the first few weeks of infection [32]. Inducible RNA assays such as the Tat/rev Inducible Limit-

ing Dilution Assay (TILDA) measure the frequency of cells harboring viral genomes that have

the ability to produce viral transcripts upon maximal stimulation [29, 33, 34]. Nevertheless,

these assays still overestimate the size of the replication-competent reservoir since a fraction of

defective genomes retains the capacity to produce viral transcripts upon stimulation [35].

Other inducible assays measuring the frequency of cells that can produce viral particles after

stimulation represent interesting alternatives. However, these assays also require limiting dilu-

tion cultures and multiple RNA extraction and RT-PCR, which make them both expensive

HIV-Flow: A new assay to characterize translation-competent reservoirs in HIV-infected individuals

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007619 February 27, 2019 2 / 28

and 108928-56-RGRL, NC), the Réseau SIDA et

maladies infectieuses du Fonds de Recherche du
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and cumbersome [36, 37]. The quantitative viral outgrowth assay (QVOA) measures the fre-

quency of resting CD4+ T cells harboring replication competent proviruses [1, 2, 38, 39] and is

often considered the gold standard since it provides a minimal estimate of the size of the HIV

reservoir. However, it is also time-consuming and labour intensive, and underestimates the

size of the reservoir to various levels in different individuals [30, 31]. Finally, full-length

sequencing of HIV genomes has the advantage of capturing intact non-induced genomes but

does not functionally assess the ability of these intact viruses to be activated or to replicate in

culture [30, 40].

All these methods offer complementary approaches to measure the magnitude of the HIV

reservoir during ART. However, unless these assays are combined with cell sorting, none of

them allow the phenotypic characterization of the cells in which HIV persists. Flow-cytometric

approaches detecting viral proteins would allow to directly phenotype HIV-infected cells.

Studies reporting detection of p24+ cells by flow cytometry in clinical samples [41, 42] may

not exclusively capture HIV-infected cells due to the low specificity of antibodies targeting p24

[43–45]. Consistent with these findings, Graf et al. showed that cells expressing high levels of

p24+ are highly enriched for HIV DNA, whereas cells expressing intermediate or low levels of

p24 are more rarely infected [41]. Recently, fluorescent in situ hybridization (flow-FISH)

approaches have been developed to detect viral transcripts in HIV-infected CD4+ T cells [14,

46, 47]. These flow cytometry-based assays enable the phenotypic characterization of HIV-

infected cells expressing the gag transcript and/or Gag protein. Together, these studies

reported complementary information on the nature of persistently infected cells, on the kinet-

ics of viral reactivation from latency and on the ability of latency reversing agents (LRAs) to

induce viral production from latent reservoirs.

Although these assays represent powerful novel technologies to quantify and characterize

the cells in which HIV transcripts and/or proteins are produced, several aspects limit their use

on a large-scale basis. First, they rely on in situ hybridization, and may consequently miss cells

harboring viral variants (or HIV subtypes) in which probes may not optimally hybridize to

RNA transcripts. Second, they require relatively large number of cells (10-20x106 CD4+ T

cells) due to material loss occurring during the multiple hybridization and amplification steps

required to visualize HIV RNA transcripts by flow cytometry. Third, target-specific sets of

probes remain expensive and RNA flow-FISH assays require 2–3 days to be completed.

Herein, we sought to develop a simplified alternative version of these assays that requires

relatively small cell input (5-10x106 CD4+ T cells) and can be used on a large-scale basis to

characterize long-lived HIV reservoirs at the single cell level by flow cytometry. Due to the

aforementioned limitations associated with the use of probes specific for RNA transcripts, we

focused on the development of an assay that would detect HIV proteins with high specificity

and sensitivity using a combination of antibodies.

Results

Detection of p24-producing cells in CD4+ T cells isolated from untreated

and ART-suppressed HIV-infected individuals

The detection of p24+ cells by flow cytometry in clinical samples is technically challenging,

since antibodies specific for HIV proteins are notorious for their limited specificity [43–45].

We hypothesized that combining antibodies targeting several viral epitopes would reduce the

number of false positive events by improving the specificity of the staining. We used a combi-

nation of two antibodies targeting distinct epitopes of the HIV protein Gag (clones KC57

and 28B7, S1A Fig). To induce or enhance p24 production, all samples were stimulated with

PMA/ionomycin. As expected, each antibody resulted in significant background when used
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individually in samples from HIV-uninfected individuals (S1B Fig). By combining these two

antibodies, no signal was observed within the double positive gate with samples from HIV neg-

ative controls. In contrast, a clear double positive signal was obtained in samples from people

with HIV (Fig 1A, S1 Fig).

We used this method (referred as HIV-Flow) to compare the frequency of cells producing

p24 in samples obtained from treated and untreated individuals with HIV in the absence of

stimulation or following stimulation (Fig 1B). Without stimulation, we failed to detect p24+

cells in samples obtained from six ART-suppressed individuals, whereas p24-producing cells

were detected in samples from all six viremic participants (Fig 1C). Of note, the vast majority

(97.6%) of these productively infected cells did not express CD4, likely as a consequence of the

down-regulation of the receptor by Nef, Vpu and Env (Fig 1D and 1E) [48–50]. Stimulation

with PMA/ionomycin revealed a population of p24-producing cells in all samples from the six

virally suppressed individuals, which is consistent with the translationally inactive nature of

the viral reservoir during ART (p = 0.03, Fig 1C). In addition, frequencies of p24-producing

cells modestly increased in samples from the six untreated participants (2.1-fold, p = 0.03, Fig

1C), suggesting that translationally inactive infected cells are also present during untreated

HIV infection. In addition to this slight increase in the frequency of p24+ cells, we observed a

significant increase in the mean fluorescence intensity within the p24+ population for both

antibodies (2.2 and 2.7-fold for p24 28B7 and p24 KC57, respectively, p = 0.03 for both, S2

Fig), indicating that the amount of p24 molecules per cell increased upon stimulation.

Specificity, sensitivity, reproducibility and linearity of HIV-Flow

To evaluate the specificity of the HIV-Flow assay, we used flow cytometry cell sorting to isolate

p24+ and p24- cells following PMA/ionomycin stimulation of CD4+ T cells obtained from

four individuals with HIV (two untreated and two suppressed on ART). Quantification of

HIV DNA by ultrasensitive PCR in the sorted populations demonstrated a marked enrichment

of HIV genomes in the p24+ cells compared to their negative counterparts (Fig 2A). p24+ cells

harbored 1 to 1.5 HIV DNA copies per cell whereas 0 to 0.02 HIV genomes/cell were measured

in the negative fractions (Fig 2A). An average 800-fold enrichment in cells harboring HIV

DNA was observed in sorted p24+ cells compared to unsorted CD4+ T cells. Of note, single

positive cells contained low levels of HIV DNA (S3 Fig).

To further validate the specificity of the assay, we sorted single p24- and p24+ cells from

three ART-suppressed individuals and subjected these single cells to HIV DNA amplification

(S4 Fig). The presence of a single cell per well was confirmed by the detection of CD3 gene.

While almost all p24- cells were devoid of HIV DNA, HIV genomes were detected in 60% to

75% of the wells containing p24+ cells, indicating that the majority of the p24+ events detected

by HIV-Flow harbored HIV DNA that could be amplified using our assay.

To evaluate the reproducibility of HIV-Flow, we measured the frequency of p24-producing

cells upon stimulation with PMA/ionomycin in seven samples from virally suppressed individ-

uals analyzed in 2–5 independent experiments (Fig 2B). The mean coefficient of variation was

0.2, indicating that HIV-Flow measures were reproducible. To assess the linearity of HIV-Flow

measures, we spiked in vitro HIV-infected CD4+ T cells in uninfected CD4+ T cells isolated

from an HIV-uninfected control (Fig 2C). The co-staining p24 KC57/p24 28B7 showed an

excellent linearity to the lowest dilution tested (3.2 p24+ cells/106 cells; R2 = 0.97). In contrast,

each individual staining was weak predictor of the frequency of p24+ cells, confirming the low

specificity of p24 antibodies when used individually [43–45]. To compare HIV-Flow and the

mRNA Flow FISH assay for their ability to detect infected cells in clinical samples, we applied

our method on samples previously analyzed by Baxter et al. [46]. We observed a highly
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Fig 1. HIV-Flow allows the detection of p24-producing cells in samples from viremic and ART-suppressed individuals. (A) Representative dot

plots showing the p24 KC57-PE/p24 28B7-APC co-staining in purified CD4+ T cells stimulated with PMA/ionomycin for 18h (viremic individuals)

or 24h (ART-suppressed individuals). In each experiment, sample from an HIV-negative control was included. (B) Representative dot plots

showing the detection of p24+ cells in the absence of stimulation (NS) or after PMA/ionomycin stimulation in samples from a viremic and an ART-

suppressed individual. (C) Frequencies of p24+ cells in the absence of stimulation or following PMA/ionomycin stimulation in samples from 6

ART-suppressed (ART) and 6 viremic individuals (VIR). Each sample is represented by a unique color-coded symbol. Undetectable measures are
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significant correlation between both assays (r = 0.78, p<0.0001, Fig 2D), indicating that HIV--

Flow and mRNA Flow FISH provide similar estimates of the size of the translation competent

reservoir in clinical samples.

Relationships between HIV-Flow, plasma viral load and reservoir measures

We used HIV-Flow to measure the frequency of p24-producing cells upon stimulation with

PMA/ionomycin in CD4+ T cells isolated from 20 untreated and chronically infected individ-

uals (Table 1, VIR1-20). We measured a median frequency of 87 p24+ cells/106 cells (IQR =

22–215 cells/106 cells). Frequencies of p24+ cells were strongly correlated with plasma viral

loads (p<0.0001, r = 0.90, Fig 3A). We calculated the absolute numbers of p24+ cells per μL of

blood and determined linear regression between plasma viral load (copies/μL) and the absolute

number of p24+ cells per μL of blood (p<0.0001; r = 0.95, log(Y) = 0.67�log(X)–2.4; Fig 3B).

Based on this analysis, we estimated that each individual p24+ cell detected in the blood was

associated to approximately 2,000 viral particles in the plasma.

To evaluate the ability of HIV-Flow at estimating the size of the persistent HIV reservoir in

ART-suppressed individuals, we used samples from a cohort of 24 well-characterized partici-

pants on ART for a median of 9.9 years (Table 2, ART1-24). Upon stimulation of CD4+ T cells

with PMA/ionomycin, we measured a median frequency of 4.3 p24+ cells/106 cells (IQR 0.7–

8.0, Table 2). This frequency of infected cells was intermediate between mQVOA (median = 0.9

IUPM) and TILDA (median = 20.1 cells/106 CD4+ T cells) and dramatically lower than the

frequency of cells harboring HIV DNA (medians of 1,014 and 510 copies/106 cells for total

and integrated HIV DNA, respectively, Fig 3C). Interestingly, the frequency of p24+ cells mea-

sured by HIV-Flow correlated with the levels of total HIV DNA (r = 0.56, p = 0.004), inte-

grated HIV DNA (r = 0.57, p = 0.004) and with the frequency of cells producing Tat/rev RNA

measured by TILDA (r = 0.65, p = 0.0005, Fig 3D). Although the association was weaker, we

also observed a statistically significant correlation between the frequencies of infected cells

measured by HIV-Flow and mQVOA (r = 0.43, p = 0.04, Fig 3D). Taken together, our results

indicate that the HIV-Flow assay, which detects cells harboring translation-competent

genomes, measures frequencies of infected cells that are intermediate between viral RNA

induction assays (transcription-competent genomes) and mQVOA (replication-competent

genomes). In addition, our results suggest that this novel assay may be used as a surrogate

for other methods aimed at measuring the size of the HIV reservoir in virally suppressed

individuals.

Phenotypic analysis of infected cells in untreated HIV infection

To determine if specific cell subsets are enriched in productively infected cells during

untreated HIV infection, we developed several panels of antibodies (S2 Table) to simulta-

neously quantify and phenotype p24+ cells in samples from viremic individuals. CD4+ T cells

from 8 untreated participants were rested for 18h and stained for cell-surface markers and

intracellular p24.

Since T cell activation is required for productive infection [51], we first assessed whether

CD4+ T cells displaying an activated phenotype were enriched in productive HIV. Several

markers of T cell activation or proliferation were significantly enriched in productively

infected cells, including CD25 (p = 0.02), HLA-DR (p = 0.04) and Ki67 (p = 0.008) (Fig 4A,

represented as opened symbols, and limits of detection are plotted. For statistical analyses, Wilcoxon matched-pairs signed rank test was performed.

(D) Representative dot plot showing cell surface CD4 expression in p24+ cells (represented as red dots) obtained from a viremic individual. (E) Pie

chart representing the average proportions of p24+ cells expressing CD4 on their surface in samples from 6 viremic individuals.

https://doi.org/10.1371/journal.ppat.1007619.g001
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Fig 2. Specificity, sensitivity and reproducibility of HIV-Flow. (A) Representative dot plot showing the gating strategy used to sort p24+ and p24-

cells following stimulation of CD4+ T cells with PMA/ionomycin (left). Total HIV DNA was quantified by ultrasensitive PCR in each sorted subset

as well as in total unsorted CD4 T cells (right). (B) Repeated measures of the frequencies of p24+ cells from 7 ART-suppressed individuals in 2–5

independent experiments. Medians and interquartile ranges are shown. (C) Frequency of p24+ cells assessed by single staining p24 KC57 or p24

28B7, or by dual staining p24 KC57/p24 28B7 in in vitro infected CD4+ T cells spiked at different ratios in uninfected CD4+ T cells purified from an

HIV uninfected individual. Predicted curve is represented by the dashed line. (D) Correlation between the frequency of p24+ cells assessed by

HIV-Flow and the RNA Flow FISH assay. For statistical analyses, non-parametric Spearman correlation was performed.

https://doi.org/10.1371/journal.ppat.1007619.g002
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S5A Fig, and S3 Table). In contrast, p24+ cells were not enriched in CD4+ T cells expressing

CD69 and CD38, suggesting that a restricted number of activation markers are associated with

productive HIV infection. Furthermore, the death receptor Fas (CD95), which expression

increases upon T cell activation [52, 53], was expressed by 95% of p24+ cells (p = 0.008, Fig 4A,

S5A Fig and S3 Table). To determine if the combination of multiple markers of activation/pro-

liferation could further enrich in p24+ cells, we performed a Boolean analysis with the recep-

tors we identified as preferentially expressed by p24+ cells (CD25, HLA-DR, CD95, Ki67). In

the majority of the samples tested, the frequency of p24+ cells progressively increased with the

number of markers co-expressed (median frequencies = 3, 90, 174, 387, and 745, for cell sub-

sets expressing 0, 1, 2, 3, 4 markers, respectively, S6A Fig).

Since T cell activation leads to the upregulation of several immune checkpoint molecules

[54], we also measured the expression of LAG-3, Tim-3, PD-1 and TIGIT in p24+ cells. Strik-

ingly, all these immune checkpoint molecules significantly enriched in productively HIV-

infected cells (LAG-3, p = 0.008; Tim-3, p = 0.008; PD-1, p = 0.02 and TIGIT, p = 0.02; Fig 4B,

S5A Fig and S3 Table). By performing a Boolean analysis with these 4 markers, we observed

that the highest frequencies of p24+ cells were detected in cell subsets co-expressing 3 or 4

immune checkpoint molecules (median frequencies = 72, 134, 131, 539, and 403, for cell sub-

sets expressing 0, 1, 2, 3, 4 molecules, respectively S6A Fig).

Table 1. Characteristics of viremic individuals.

ID Age

(years)

Gender1 CD4 count

(cells/μl)

CD4/CD8 Ratio Viral Load

(copies/mL)

Time since diagnosis

(years)

VIR1 22 M 750 0.8 286 1.0

VIR2 46 M 504 0.7 667 7.3

VIR3 37 F 415 0.5 1256 5.0

VIR4 55 M 480 0.3 3300 5.7

VIR5 32 M 543 0.6 6077 N.A

VIR6 41 M 406 0.4 6671 22.6

VIR7 42 F 638 1.3 8700 7.6

VIR8 38 M 138 0.4 14614 11.0

VIR9 43 F 681 1.3 15000 8.2

VIR10 47 F 779 0.6 18320 13.5

VIR11 29 F 284 0.5 21000 5.3

VIR12 47 M 492 1.0 39489 8.5

VIR13 49 M 281 0.4 44848 7.3

VIR14 27 F 319 0.7 51000 12.0

VIR15 40 M 434 0.2 51000 2.5

VIR16 41 M 499 0.3 52915 N.A

VIR17 45 M 228 0.3 73109 10.3

VIR18 38 M 320 0.2 132886 0.4

VIR19 43 M 356 0.3 193437 1.9

VIR20 51 M 289 0.1 268432 13.1

VIR21� 34 M 688 0.2 366487 0.2

Median 41 434 0.4 21000 7.3
IQ range [37–46] [319–543] [0.3–0.7] [6671–52915] [3.8–10.6]

1Gender: F = female, M = male

N.A = not available

� acute stage of HIV infection and excluded from the analysis in Fig 3A

https://doi.org/10.1371/journal.ppat.1007619.t001
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Fig 3. HIV-Flow correlates with other assays measuring the size of the HIV reservoir. (A) Correlation between plasma viral load and

the frequency of p24+ cells in purified CD4 T cells from 20 chronically infected untreated individuals following stimulation with PMA/

ionomycin. Data were log transformed and non-parametric Spearman correlation was used for statistical analyses. (B) Correlation

between plasma viral load and the absolute number of p24+ cells per μl of blood. Data were log transformed and a linear regression was

performed between plasma viral load (HIV RNA copies/μL) and the absolute numbers of p24-producing cells per μL of blood. (C)
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PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007619 February 27, 2019 9 / 28

https://doi.org/10.1371/journal.ppat.1007619


Since memory CD4+ T cells have previously been shown to be preferentially targeted by

HIV [55], we then analyzed the memory status of p24+ cells by focusing on naïve (TN:

CD45RA+CCR7+CD27+), central memory (TCM: CD45RA-CCR7+CD27+), transitional

memory (TTM: CD45RA-CCR7-CD27+), effector memory (TEM: CD45RA-CCR7-CD27-) and

terminally differentiated (TTD: CD45RA+CCR7-CD27-) cells (Fig 5A, S5A and S7A Figs and

S3 Table). Productively infected cells were enriched in the TTM subset (p = 0.008, Fig 5A)

which encompassed 39% of all p24+ cells (S7A Fig). Conversely, p24+ cells rarely displayed a

TN or TTD phenotype (1.9 and 0.2%, respectively). Although a significant fraction of p24+ cells

also displayed a TCM (36%) or TEM (23%) phenotype, these subsets were not significantly

enriched in infected cells during untreated HIV infection.

Several studies have shown that HIV preferentially infects CD4+ T cells endowed with spe-

cific effector functions, including Th17 [26, 27], T follicular helper cells (Tfh) [24, 46] and reg-

ulatory T cells (Treg) [56, 57]. We used HIV-Flow to assess the relative contribution of these

subsets to the pool of productively infected cells. Using antibodies specific for CCR4, CXCR3

and CCR6, we identified 6 populations of cells as described previously [26]. The greatest levels

of enrichment were observed in Th17 cells (CXCR3-CCR4+CCR6+) and CXCR3+CCR4+

cells which encompassed 25% (p = 0.008) and 21% (p = 0.008) of all p24+ cells, respectively

(Fig 5B, S5A and S7A Figs and S3 Table). Conversely, p24+ were underrepresented within the

CXCR3-CCR4- subsets (p = 0.008). Of note, some p24+ cells were detected within the Th1

(CXCR3+CCR4-CCR6-), Th1Th17 (CXCR3+CCR4-CCR6+) and Th2 subsets (CXCR3-

CCR4+CCR6-) (21%, 2.8% and 13%, respectively), but none of these subsets were significantly

enriched in infected cells (Fig 5B, S5A and S7A Figs and S3 Table). In contrast, both peripheral

T follicular helper cells (CXCR5+PD-1+) and regulatory T cells (CD25+CD127-) were

enriched for p24+ cells (p = 0.015 for both subsets) and encompassed 9.5% and 5.5% of

infected cells, respectively (Fig 5C and S3 Table).

The integrin α4β7 defines a T cell subset that is highly susceptible to HIV infection [58, 59].

Using HIV-Flow, we observed that cells expressing this homing receptor were enriched in

p24+ cells (p = 0.015, respectively, Fig 5D, S5A Fig and S3 Table). Interestingly, we also

observed a significant enrichment in p24+ cells within α4+β1+ cells (p = 0.008). Taken

together, our results indicate that productively infected cells are enriched in specifically differ-

entiated (TTM) and effector (Th17, CXCR3+CXCR4+, Tfh, Treg cells) subsets as well as in cells

expressing immune activation markers, immune checkpoint molecules and homing receptors.

Phenotypic analysis of persistently infected cells in virally suppressed

individuals

To identify the phenotype of persistently infected cells during ART, we stimulated CD4+ T

cells from 12 virally suppressed individuals with PMA/ionomycin and used several panels of

antibodies as above (S2 Table). Since PMA/ionomycin led to increased expression of several

cell surface markers of interest, we stimulated CD4+ T cells in the presence of brefeldin A

(BFA) to prevent upregulation of these molecules. Although most of the markers of interest

retained their expression using this approach (S8 Fig), analysis of functional subsets was not

possible due to dramatic changes in the expression of CCR6, CXCR3, CCR4, CXCR5, CD25

Frequencies of infected cells in samples from 24 ART-suppressed individuals were estimated using 5 different assays (total HIV DNA,

integrated HIV DNA, TILDA, HIV-Flow, and mQVOA). Black lines represent medians. Each sample is represented by a unique color-

coded symbol. Undetectable measurements are represented as open symbols, and limits of detection are plotted. (D) Correlations

between the frequency of p24-producing cells assessed by HIV-Flow and other assays measuring the reservoirs size (total HIV DNA,

integrated HIV DNA, TILDA and mQVOA). For statistical analyses, data were log transformed and non-parametric Spearman

correlations were performed.

https://doi.org/10.1371/journal.ppat.1007619.g003
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Table 2. Characteristics of ART-suppressed individuals.

ID Age

(years)

Gender1 CD4 count

(cells/μl)

CD4/CD8 Ratio Viral Load

(copies/mL)

Time to ART initiation

(years)

Time since diagnosis

(years)

Time on ART

(years)

ART1 35 M 1589 1.0 < 40 0.8 8.0 7.1

ART2 50 M 331 0.7 < 40 1.7 20.0 18.3

ART3 55 M 696 0.7 < 40 6.0 15.4 9.4

ART4 52 M 836 0.5 < 40 0.4 14.0 14.0

ART5 45 M 429 0.8 < 40 10.7 14.0 3.3

ART6 36 M 461 0.5 < 40 0.5 7.0 6.6

ART7 60 M 624 1.1 < 40 0.4 4.6 4.3

ART8 67 M 620 1.1 < 40 2.1 20.4 18.3

ART9 48 M 662 1.0 < 40 0.2 16.9 16.7

ART10 36 M 882 0.7 < 40 4.7 13.8 9.1

ART11 55 M 847 1.4 < 40 15.1 29.3 14.1

ART12 21 M 331 0.8 < 40 0.2 4.3 4.1

ART13 66 M 601 0.7 < 40 6.5 22.2 15.6

ART14 60 M 803 1.9 < 40 4.8 25.1 20.4

ART15 58 M 628 1.0 < 40 0.9 21.6 20.7

ART16 58 M 520 0.4 < 40 14.0 21.4 7.4

ART17 56 M 582 1.4 < 40 1.4 11.7 10.3

ART18 47 M 625 1.2 < 40 0.3 15.1 14.8

ART19 36 M 471 1.5 < 40 7.8 12.0 4.2

ART20 45 M 681 0.6 < 40 1.1 13.4 12.3

ART21 58 M 602 2.1 35.0 0.8 9.2 8.4

ART22 57 M 1173 1.0 < 20 0.6 20.7 20.1

ART23 33 M 1042 1.3 < 40 3.0 10.8 7.8

ART24 44 M 914 0.7 < 40 1.0 5.9 4.9

ART25 41 M 1177 1.3 < 50 N.A 9.3 N.A

ART26 60 M 677 0.9 < 20 N.A N.A N.A

ART27 46 M 887 0.8 < 20 2.0 18.3 16.3

ART28 46 F 527 0.3 < 20 1.0 7.4 6.4

ART29 43 F 351 1.0 < 41 11.7 15.4 3.7

ART30 32 M 734 1.0 < 20 4.9 7.4 2.5

ART31 50 M 1110 2.8 < 20 N.A 16.0 N.A

ART32 46 F 1030 0.9 < 20 N.A 18.6 N.A

ART33 56 M 715 1.0 140.0 N.A 27.6 N.A

ART34 46 M 1897 2.3 < 20 N.A 19.7 N.A

ART35 32 M 248 0.7 < 20 0.5 3.1 2.7

ART36 31 M 394 0.5 49.0 2.9 3.7 0.9

ART37 63 M 782 0.5 < 40 13.0 19.3 6.3

ART38 47 M 356 0.4 < 40 10.3 14.7 4.4

ART39 39 M 616 0.5 < 40 0.6 1.8 1.2

Median 47 662 0.9 1.7 14.4 7.8
IQ range [40–57] [524–865] [0.7–1.2] [0.6–6.0] [8.3–19.6] [4.3–14.8]

1Gender: F = female, M = male

N.A = not available

https://doi.org/10.1371/journal.ppat.1007619.t002
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and CD127, even in the presence of BFA (S9A and S9B Fig). In addition, CD4 downmodula-

tion was still observed after PMA/ionomycin stimulation despite the use of BFA, which did

not allow us to assess CD4 expression in p24+ cells from ART-suppressed individuals

(S9C Fig).

We previously demonstrated that the immune checkpoint molecules PD-1, LAG-3 and

TIGIT are preferentially expressed at the surface of CD4+ T cells harboring integrated HIV

DNA [21]. We used HIV-Flow to determine if these cell surface markers would also enrich in

translation-competent genomes. PD-1 and TIGIT expressing cells were enriched in p24-pro-

ducing cells (p = 0.04 and p = 0.001, respectively, Fig 6A, S5B Fig and S3 Table), whereas

p24+ cells were not preferentially detected in CD4+ T cells expressing LAG-3 and Tim-3. We

performed a Boolean analysis to determine if the combination of PD-1 and TIGIT further

enriched in p24+ cells. Interestingly, p24+ cells were rarely found in cells expressing none of

these markers, whereas cells expressing one or two markers were significantly enriched in

p24+ cells compared to all cells. Of note, in 5/11 individuals, the degree of enrichment was

Fig 4. p24-producing cells from untreated individuals are enriched in subsets expressing markers of activation and exhaustion. Representative

dot plots showing the phenotype of p24+ cells (represented as red dots) overlaid onto all cells (in grey) after 18h of resting. The contribution of a

given subset to the pool of all cells and to the pool of infected cells (p24+) are compared in samples from n = 8 untreated individuals (VIR9, 10, 12,

13, 15, 16, 20, 21). (A) Activation/proliferation/apoptosis markers: CD69, CD25, HLA-DR, Ki67, CD38, CD95. (B) Immune checkpoint molecules:

LAG-3, Tim-3, PD-1, TIGIT. For statistical analyses, Wilcoxon matched-pairs signed rank test was performed.

https://doi.org/10.1371/journal.ppat.1007619.g004
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Fig 5. p24-producing cells from untreated individuals are enriched in various cell subsets. Representative dot plots showing

the phenotype of p24+ cells (represented as red dots) overlaid onto all cells (in grey) after an 18h-resting. The contribution of a

given subset to the pool of all cells and to the pool of infected cells (p24+) are compared in samples from n = 8 untreated

individuals (same as in Fig 4). (A) Memory phenotype: TN, TCM, TTM, TEM and TTD cells. (B) CXCR3-CCR4-, CXCR3+CCR4+,

Th1, Th2, Th17, and Th1Th17 cells. (C) pTfh and Treg cells. (D) Integrins: α4β7 and α4β1. For statistical analyses, Wilcoxon

matched-pairs signed rank test was performed.

https://doi.org/10.1371/journal.ppat.1007619.g005
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Fig 6. p24-producing cells from ART-suppressed individuals are enriched in TTM/TEM, PD-1+, TIGIT+ and α4+β1+ cells. Representative dot

plots showing the phenotype of p24+ cells represented as red dots overlaid onto all cells in grey. Purified CD4 T cells from 12 ART-suppressed

individuals were stimulated with PMA/ionomycin for 24h before analysis. BFA was added 1h before PMA/ionomycin stimulation and was

maintained until the end of the stimulation. The contribution of a given subset to the pool of all cells and to the pool of infected cells (p24+) are

compared in samples from n = 12 ART-suppressed individuals (ART5, 9, 10, 11, 14, 16, 18, 19, 21, 22, 27, 33). (A) Immune checkpoint molecules:

LAG-3, Tim-3, PD-1, TIGIT. (B) Memory phenotype: TN, TCM, TTM, TEM and TTD cells. (C) Integrins: α4β7 and α4β1. For statistical analyses,

Wilcoxon matched-pairs signed rank test was performed.

https://doi.org/10.1371/journal.ppat.1007619.g006
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further increased when PD-1 and TIGIT were co-expressed compared to cells expressing only

one marker (S6B Fig).

Several studies have demonstrated that HIV genomes preferentially persist in CD4+ T cells

displaying a memory phenotype, including TCM, TTM and TEM cells [60–62]. Analysis of the

memory phenotype of p24+ cells by HIV-Flow revealed that the majority of cells carrying

translation-competent genomes displayed a TTM or TEM phenotype (35.4% and 35.7%,

p = 0.0015 and p = 0.001, respectively), whereas p24+ TN and TTD were rare in individuals on

ART (2.9% and 0.9%, respectively, Fig 6B, S5B and S7B Figs and S3 Table). Although a signifi-

cant fraction of p24+ cells displayed a TCM phenotype (25.2%), infected cells were slightly

underrepresented within this subset (p = 0.04). Unlike what we observed in samples from

untreated individuals, the α4+β7+ subset was not enriched in p24+ cells in virally suppressed

individuals (Fig 6C, S5B Fig and S3 Table). In contrast, the α4+β1+ population remained sig-

nificantly enriched in p24-producing cells during ART (p = 0.0005), with 74% of p24+ cells

expressing this homing receptor on their surface.

Since CD32a was recently proposed as a marker of CD4+ T-cell harboring replication-com-

petent proviruses during ART [12], we used HIV-Flow to determine if p24-producing cells

from ART-suppressed individuals were enriched in the CD32high population. Following stimu-

lation with PMA/ionomycin in the presence of BFA, we observed a slight increase in the pro-

portion of cells expressing CD32a (0.15% to 0.32% CD32+ cells, S10A Fig). In samples from

four ART-suppressed individuals, none of the p24-producing cells were found to express high

levels of CD32 (S10B Fig), indicating that the majority of the cells harboring translation com-

petent HIV do not express CD32 in individuals on ART.

Altogether, our results indicate that the cells in which HIV persists during ART are pheno-

typically diverse, with significant enrichment for translation-competent HIV genomes in cells

displaying differentiated memory phenotypes (TTM and TEM cells) as well as in subsets of cells

expressing PD-1, TIGIT and α4β1.

To determine if the cell surface markers we identified as preferentially expressed by infected

cells could be used in combination to further enrich in p24+ cells, we combined antibodies to

CD45RA, PD-1, TIGIT and α4β1 in a single antibody panel. We observed that the highest

degree of enrichment was obtained in cells displaying a CD45RA-, α4β1+, TIGIT+ phenotype

(5.4-fold enrichment, p = 0.008, S11 Fig).

Discussion

An increasing number of interventions aimed at reducing the size of the HIV reservoir are cur-

rently under evaluation in clinical trials [11]. Measuring the efficacy of these strategies requires

precise quantification of the frequency of infected cells [29, 63]. The phenotypic characteriza-

tion of these long-lived reservoir cells is also of great interest since several eradication strategies

target specific cellular reservoirs. Currently, mRNA Flow-FISH, which relies on the simulta-

neous detection of HIV transcripts and p24 protein by flow cytometry [46], is the only

approach that can simultaneously measure the frequency and assess the phenotype of infected

CD4+ T cells persisting in ART-suppressed individuals. Herein, we developed a simpler ver-

sion of the mRNA flow FISH assay that requires only 5–10 million CD4+ T cells, can be com-

pleted in two days, and can be used on a large scale to quantify and phenotype the translation-

competent HIV reservoir. We found that HIV-Flow is reproducible and linear to the lowest

dilution tested. Cell sorting of p24- and p24+ cells revealed that p24+ cells harbored on average

1 to 1.5 HIV DNA copies per cell, whereas 0 to 0.02 HIV genomes/cell were measured in p24-

cells. Of note, we measured 1.0–1.5 copies of HIV DNA per p24+ cell (average = 1.25 copies/

cell), which is slightly higher than the frequency of 1 copy per cell previously reported [64].
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This may be explained by multiple infections of a single cell or by the relative imprecision of

the quantitative PCR assay. In addition, although the majority of single sorted p24+ cells har-

bored detectable HIV DNA, HIV genome could not be amplified in 25–40% of p24+ single

cells, likely reflecting the inefficient amplification of a single viral genome.

Using HIV-Flow, we measured a median frequency of 4.3 p24-producing cells/106 cells in

ART-suppressed individuals. This is 200 times lower than the frequency of cells harboring

total HIV DNA (1,014 cells/106 cells), reflecting an important gap between the total number of

HIV DNA molecules and the small fraction of genomes that can lead to the production of a

correctly folded p24 protein. This is in line with the high proportion of genomes carrying

hypermutations or internal deletions as previously reported [30, 40, 65]. Similarly, HIV-Flow

frequencies are 4.7 times lower than those measured by TILDA (median = 20.1 copies/106

CD4 T cells), suggesting that a significant proportion of proviruses may give rise to msRNA

upon stimulation but not to p24 protein. The frequency of p24-producing cells measured by

HIV-Flow was also 4.8 times higher than the one measured by mQVOA (median = 0.9

IUPM), suggesting that a fraction of p24-producing cells do not harbor replication-competent

proviruses likely as a consequence of defects in other viral genes. This difference in frequencies

between HIV-Flow and mQVOA may also be explained if spreading infection is not fully effi-

cient following the induction of replication competent proviruses in co-culture. In spite of

these dramatic differences in these measures, we observed that the frequencies of p24-produc-

ing cells assessed by HIV-Flow correlated with several other assays aimed at quantifying the

size of the reservoir (integrated HIV DNA, TILDA, and mQVOA). Taken together, our results

indicate that, as expected, HIV-Flow measures a frequency intermediate between viral RNA

induction assay and replication-competent HIV and may be used as a surrogate for several of

these assays.

We took advantage of this approach to identify cellular subsets enriched in HIV-infected

cells during untreated and treated infection. Strikingly, the vast majority (97.6%) of produc-

tively infected T cells displayed low levels of CD4 on their surface, likely as a result of Nef, Vpu

and/or Env-mediated downregulation, as previously proposed [48–50]. This indicates that the

functions of Nef/Vpu/Env are preserved in the majority of p24-producing cells, suggesting

that Gag production is usually accompanied by the production of other functional HIV pro-

teins. Productively infected cells were characterized by higher levels of immune activation as

demonstrated by heightened expression levels of several activation markers including CD25,

HLA-DR and Ki67. This is in line with previous studies reporting that proliferating activated

CD4+ T lymphocytes are more susceptible to HIV infection compared to resting CD4+ T

cells [51, 66]. Accordingly, several immune checkpoint molecules which are upregulated dur-

ing T cell activation like PD-1, TIGIT, LAG-3, Tim-3 [54] were also preferentially expressed

by productively infected cells. We also assessed the memory phenotype of the infected cells

and observed that productively infected CD4+ T cells were more likely to display a transitional

memory phenotype than their uninfected counterparts, as previously reported in in vitro infec-

tion studies [67]. Conversely, p24+ cells were rarely detected within the naive and terminally

differentiated subsets, which may be explained by the relative resistance of naive CD4+ T cells

to HIV-infection by CCR5-using strains [68, 69] and by the short life-span of terminally differ-

entiated cells. Using chemokine receptors to predict the functionality of these cells, we

observed that the Th17 subsets encompassed the largest proportion of productively infected

CD4+ T cells (25%). This is in accordance with previous studies in which CCR6+ T cells were

shown to be highly permissive to HIV infection [27], likely as a result of their heightened

expression of HIV dependency factors [70]. We also observed that peripheral Tfh cells and

Treg cells were enriched in productively infected cells, which is also supported by previous

findings [24, 46, 56, 57]. In fact, peripheral Tfh represent the circulating counterparts of
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germinal center Tfh cells [71], which have been shown to serve as the major compartment for

HIV production and replication during untreated HIV infection [24].

In the SIVmac251 model, peripheral memory CD4 T cells expressing high levels of α4β7

were shown to be preferentially infected during the very early phase of infection [72] and to be

preferentially depleted from gut tissues as early as the first 2 weeks following infection in

humans [59]. In line with these data, we observed that p24-producing cells were enriched in

the α4+β7+ subset in 7/8 untreated individuals, which is consistent with their ability to home

to the gut-associated lymphoid tissue (GALT), a compartment in which inflammation is

heightened during chronic untreated HIV infection and in which HIV replication may be

favoured. Interestingly, we identified the integrin α4β1 as a cell surface molecule expressed by

a large fraction of productively infected cells. Since α4β1 drives homing to the inflamed central

nervous system [73] and to the bone marrow [74], our results suggest that these compartments

may also contribute to HIV replication during untreated HIV infection.

Altogether, our results demonstrate the broad diversity of the cells in which HIV replicates

during untreated HIV infection including cells displaying an activated phenotype, cells

expressing immune checkpoint molecules, transitional memory cells, Th17, Tregs, pTfh as

well as T cells expressing homing receptors to inflamed tissues.

The identification of a cellular marker specifically expressed by persistently infected cells in

individuals on ART remains elusive. Although the Fc-gamma receptor CD32 was originally

proposed to mark these cells [12], our own measures using HIV-Flow as well as other recent

studies did not confirm these observations [13–18]. Rather, our results suggest that the latent

reservoir, similar to the pool of productively infected cells in untreated individuals, is broadly

diverse. Yet, we identified T cell phenotypes that are enriched in p24-producing cells in the

blood of individuals on ART. There are multiple reasons why specific cellular proteins would

be preferentially expressed at the surface of p24-producing cells: these molecules could be

upregulated as a consequence of HIV infection or could be preferentially expressed by cells

highly sensitive to HIV infection. Alternatively, infected cells expressing these markers may

have a selective advantage to persist over time.

Although infected cells were detected in all memory subsets as reported previously [60], we

found TTM and TEM cells to be particularly enriched in p24+ cells, which is consistent with the

fact that these subsets contain the largest fraction of intact proviruses [40]. We also observed

that CD4+ T cells expressing PD-1 and TIGIT are enriched in infected cells, as we previously

reported using quantification of integrated HIV DNA and TILDA [21]. Unlike what we

observed in untreated HIV infection, we did not observe an enrichment of p24-producing

cells in the α4+β7+ population in virally suppressed individuals, possibly as a result of the

retention of these cells in the GALT. In contrast, enrichment in α4+β1+ cells persisted after

viral suppression. This may result from a combination of functions ensured by α4β1. Indeed,

α4β1 not only mediates the adhesion and transendothelial migration of leukocytes, but also

provides costimulatory signals that contribute to the activation of T lymphocytes [75], which

may facilitate infection of T cells expressing α4β1 through proximate contact. In addition,

α4+β1+ cells not only home to the inflamed CNS, but also preferentially migrate to secondary

lymphoid organs [76, 77], which represent important HIV reservoirs during ART. Therefore,

α4β1 expression may facilitate HIV persistence by enhancing T cell expansion, a major mecha-

nism of HIV persistence during ART, as well as through migratory effects.

We acknowledge several limitations to our study. First, HIV-Flow may underestimate the

frequency of p24-producing cells in samples from viremic individuals due to high levels of cell

death and cellular turnover when compared to cells from ART-suppressed individuals [78].

Moreover, it is likely that a fraction of the cells harboring translation-competent viruses would

require more than one round of stimulation to be reactivated, as it was described for QVOA
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[30]. Unlike QVOA, HIV-Flow does not measure replication-competent HIV and it is likely

that a significant fraction of p24+ cells measured in our assay does not produce intact viral par-

ticles that have the ability to replicate in culture. Since Rev and RRE are not essential for Gag

expression, proviruses with massive 3’ deletions could still produce p24 [79, 80]. Therefore,

obtaining full length HIV sequences in p24+ cells will be important to determine the fraction

of translation competent genomes that are intact. This overestimation of the size of the reser-

voir may vary between individuals and whether the frequency of infected cells measured by

HIV-Flow can be used to predict control of HIV replication during analytic treatment inter-

ruption remains to be determined. Another limitation of HIV-Flow is the need to activate

CD4+ T cells to detect intracellular p24 in samples from virally suppressed individuals, which

results in alteration in the phenotype of the cells. Although this phenomenon can be attenuated

by adding BFA during the stimulation, several cell surface markers, including CD4, could not

be analyzed using our assay. Future studies will also need to investigate the possibility of

detecting and characterizing p24+ cells in tissues, since anatomical compartments carry the

majority of persistent HIV/SIV during ART [81, 82]. Although the HIV-Flow assay only

requires relatively limited numbers of cells, we agree that obtaining 5–10 million CD4+ T cells

may be challenging in clinical studies in which repeated samplings are required or in pediatric

studies. In addition, the limited number of cells that can be recovered from tissue sampling

may not allow sufficient sensitivity to detect p24+ cells by HIV-Flow. Future studies will also

be needed to determine whether various HIV clades can be recognized by the two antibodies

used to detect p24.

In conclusion, we developed a new flow cytometry-based assay that allows the simultaneous

quantification and phenotyping of p24-producing cells both in untreated and ART-suppressed

individuals. By combining our assay and novel flow cytometry or mass cytometry approaches

that allow the analysis of 30–50 parameters simultaneously, the identification of cellular sub-

sets highly enriched in HIV in blood and tissues from individuals living with HIV could

become a more realistic endeavor.

Materials and methods

Participants and blood collection

All participants underwent leukapheresis to collect large numbers of PBMCs. A total of 21

untreated viremic individuals and 39 individuals on stably suppressive ART participated in

this study. Participants characteristics are summarized in Tables 1 and 2. PBMCs were isolated

by Ficoll density gradient centrifugation and were cryopreserved in liquid nitrogen.

Ethics statement

All participants were adults and signed informed consent forms approved by the McGill Uni-

versity Health Centre, the Centre Hospitalier de l’Université de Montréal and the Martin

Memorial Health Systems review boards.

Antibodies

We used a combination of two antibodies directed to p24: p24 KC57-PE was obtained from

Beckman Coulter (6604667) and p24 28B7-APC was obtained from MediMabs (MM-

0289-APC). The following antibodies were used for staining: CD3 (UCHT-1), CD4 (SK3),

CD8 (RPA-T8), CD45RA (HI100), CCR7 (3D12), PD-1 (EH12.1), β1 (MAR4), β7 (FIB504),

CD69 (FN50), CD25 (M-A251), HLA-DR (G46-6), CD38 (HIT2), Ki67 (MOPC-21), CD95

(DX2), CD39 (Tu66), CD127 (HIL-7R-M21), CXCR3 (1C6), CCR4 (1G1), CCR6 (11A9) were
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purchased from BD Bioscience. LAG-3 (FAB2319) was obtained from R&D systems, and

TIGIT (MBSA43) from eBioscience. CD27 (O323), Tim-3 (F38-2E2), α4 (9F10), CD28

(CD28.2) and CD32 (FUN-2) were purchased from BioLegend. Live/Dead Aqua Cell Stain

(405nm) was obtained from ThermoFisher Scientific (L34957). Detailed panels of antibodies

are reported in S2 Table.

HIV-flow procedure

Upon thawing of PBMCs, CD4+ T cells were isolated by negative magnetic selection using the

EasySep Human CD4 T Cell Enrichment Kit (StemCell Technology, 19052). Purity was typi-

cally>98%. 5-10x106 CD4+ T cells were resuspended at 2x106 cells/mL in RPMI + 10% Fetal

Bovine Serum and antiretroviral drugs were added to the culture (200nM raltegravir, 200nM

lamivudine). Cells were stimulated with 1μg/mL ionomycin (Sigma, I9657) and 25nM (18h) or

162nM PMA (24h) (Sigma, P8139) for samples from viremic and aviremic individuals, respec-

tively. In phenotypic characterization experiments, samples from ART-suppressed individuals

were pre-incubated for 1h with 5μg/mL Brefeldin A (BFA, Sigma, B2651) before stimulation

in order to prevent the upregulation of cell surface markers. BFA was maintained in the culture

until the end of the stimulation. After stimulation, cells were collected, resuspended in PBS

and stained with the Aqua Live/Dead staining kit for 30min at 4˚C. Cells were then stained

with antibodies against cell surface molecules in PBS + 4% human serum (Atlanta Biologicals,

540110) for 30min at 4˚C. After a 15min-fixation step at room temperature (RT) with 4%

formaldehyde, cells were permeabilized for 30min at 4˚C using the PermWash buffer (BD Bio-

sciences, 554723), and stained with anti-p24 KC57 and anti-p24 28B7 antibodies for an addi-

tional 45min at RT. Cells were then washed and resuspended in PBS for subsequent analysis.

In some experiments, the fixation/permeabilization step was performed with the FoxP3 Tran-

scription Factor Staining Buffer Set (eBioscience, 00-5523-00) following the manufacturer’s

instructions. Similar frequencies of p24+ cells were obtained using both permeabilization buff-

ers (PermWash Buffer from BD versus FoxP3 Buffer Set from eBioscience; S12 Fig). Our

detailed laboratory protocol describing all steps of the HIV-Flow procedure is accessible here:

dx.doi.org/10.17504/protocols.io.w4efgte.

HIV flow: Gating strategy and data analysis

The frequency of p24 double positive cells (KC57+, 28B7+) was determined by flow cytometry

(BD LSRII) in gated viable CD4 T cells. This gate included both CD4 positive and CD4 nega-

tive T cells and was referred as “all cells” in this study. An example of the gating strategy is rep-

resented in S13 Fig. Samples with cell viability < 50% post-stimulation, as assessed by LIVE/

DEAD staining, were excluded from the analysis. In all experiments, CD4+ T cells from an

HIV-negative control were included to set the threshold of positivity. For gating strategy in

immunophenotypic experiments, markers that are typically expressed at low levels in naïve

cells (activation/proliferation markers, immune checkpoint molecules) were gated against

CD45RA, whereas CD38 and CD95 were gated against CD4.

Flow cytometry cell sorting

Cells were sorted in 96-wells PCR plates containing 15μL of proteinase K lysis buffer (0.1M

Tris HCl, 0.5M KCl, 10mg/mL proteinase K from Life Technologies 25530–015). Single cells

and up to a 1,000 cells per well were sorted on a BD FACS ARIA III. The PCR plates were sub-

sequently incubated at 55˚C for 16 hours for cell lysis followed by a 5min-incubation step at

95˚C to inactivate proteinase K.
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Quantification of total and integrated HIV DNA

Frequencies of CD4+ T cells harboring total and integrated HIV DNA were measured by real

time nested PCR, as previously described [83]. Briefly, cells were lysed by proteinase K diges-

tion. Cell lysates were directly used for HIV DNA quantifications. Total HIV-1 DNA was

amplified with primers annealing the LTR/gag region. Integrated HIV DNA was amplified

with Alu primers together with a primer annealing the LTR. In all PCR reactions, primers spe-

cific for the CD3 gene were added to precisely quantify the cell input. In a second round of

PCR, appropriate primers and probes were used to amplify HIV sequences from the first

round of amplification. Inner primers specific for the CD3 gene were used in a separate reac-

tion to determine cell input. The number of copies of total and integrated HIV-1 DNA were

calculated by using serial dilutions lysed ACH-2 cells as a standard curve. All measures were

performed in triplicate wells (except for plate cell sorting of p24+ cells). Results were expressed

as numbers of HIV copies per million cells.

Linearity of the assay

Purified CD4+ T cells from an HIV uninfected donor were activated with phytohemaggluti-

nin-L (10 μg/ mL) for 48 hours and then maintained in RPMI 1640 complete medium supple-

mented with rIL-2 (100 U/mL). HIV NL4.3 was then used to infect activated primary CD4+ T

cells by spin infection at 800 × g for 1 h in 96-well plates at 25 ˚C. In vitro infected CD4+ T

cells were spiked at different ratios in CD4+ T cells purified from an HIV-uninfected control.

The linearity of the assay was determined by comparing the predicted frequency of infected

cells to the measured frequencies of p24+ cells obtained by single p24 staining with KC57 or

28B7 or by dual staining p24 KC57/p24 28B7.

Tat/rev inducible limiting dilution assay (TILDA)

The frequency of CD4+ T cells with inducible multiply spliced HIV RNA was determined

using TILDA as previously described [34].

RNA-Flow FISH

The frequency of cells harboring simultaneously gag transcripts and Gag proteins was deter-

mined using RNA-Flow FISH, as previously described [46, 84].

Modified quantitative viral outgrowth assay (mQVOA)

Purified CD4+ T cells were serially diluted in Costar plates coated with anti-CD3 (2.5μg/ml,

Clone OKT3) and anti-CD28 (1μg/mL, Clone CD28.2, BioLegend 302902) monoclonal anti-

bodies. Five serial 3-fold dilutions were performed at a starting concentration of 1x106 cells/

well (first dilution in a 24-well plate and following dilutions in a 96-well plate), with 6 repli-

cates per dilution. After two days of stimulation, 50,000 or 10,000 MOLT-4/CCR5+ cells (NIH

AIDS Reagent Program, 4984) were added to cell culture 24- or 96- well, respectively (day 0).

Cell cultures were split twice weekly and half of cell culture supernatants (500μl or 100μl)

were collected at days 7, 14 and 21 for quantification of soluble HIV-p24 protein. Supernatants

were lysed and kept at -80˚C until use. p24 protein was quantified by ELISA as previously

described [85]. The number of wells positive for soluble p24 protein was determined, and the

maximum likelihood method was applied to determine infectious units per million of cells

(IUPM) (http://silicianolab.johnshopkins.edu/) [86].
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Statistical analyses

All data were analyzed using Graphpad Prism v6.0h. To compare frequencies of infected cells

measured by total and integrated HIV DNA, TILDA, mQVOA and HIV-Flow, values were

transformed in log10([HIV copies/106 cells]+1). Results were represented as median or mean

values, with interquartile range or minimum and maximum values, as indicated in the figure

legends. Correlations were determined using nonparametric Spearman’s test. For enrichment

data, non-parametric Wilcoxon matched-pairs signed rank tests were used. P values of less

than 0.05 were considered statistically significant.

Supporting information

S1 Fig. Characterization of p24 KC57 and p24 28B7 antibodies. (A) Representative dot plots

obtained from a binding competition experiment. Staining with either KC57 or 28B7 in a first

step (1) does not prevent subsequent staining with the other antibody (2) (middle and right

panels). Co-staining with both antibodies yielded a similar frequency of p24+ cells (left panel).

(B) Representative dot plots showing single stainings or co-staining with p24 KC57 and p24

28B7 antibodies in samples from an HIV negative control and an ART-suppressed individual.

(TIF)

S2 Fig. MFI of p24 antibodies following stimulation. Comparison of the MFI of the two p24

antibodies (p24 28B7-APC and p24 KC57-PE) in the presence or absence of stimulation with

PMA/ionomycin in samples from 6 untreated individuals. The MFI of p24 antibodies was

measured within the p24+ gate (p24 KC57+/p24 28B7+).

(TIF)

S3 Fig. Single positive cells contain low HIV DNA levels. (A) Representative dot plot show-

ing the gating strategy used to sort four populations of unstimulated cells (KC57+/28B7+,

KC57+, 28B7+ and KC57-/28B7- cells) obtained from one untreated individual (VIR21). Total

HIV DNA was quantified by ultrasensitive PCR in each sorted subset (right). (B) Levels of

CD4 expression in the different subsets.

(TIF)

S4 Fig. HIV DNA detection by PCR in p24+ single sorted cells. p24- and p24+ CD4 T cells

from three ART-suppressed individuals were single sorted by flow cytometry and subjected to

a duplex ultrasensitive PCR for the CD3 gene and the HIV genome (LTR/gag). Grey and dark

circles represent successful detection of the CD3 gene and the HIV genome, respectively. A)

12 cycles of pre-PCR amplification were performed. B) 24 cycles of pre-PCR amplification

were performed.

(TIF)

S5 Fig. Frequencies of p24+ cells in different subsets. (A) Frequencies of p24+ cells in all

cells and in each gated cellular subset in samples from 8 viremic individuals (same as in Figs 4

and 5). (B) Frequencies of p24+ cells in all cells and in each gated cellular subset in samples

from 12 virally suppressed individuals (same as in Fig 6). Each sample is represented by a

unique color-coded symbol. For statistical analyses, Wilcoxon matched-pairs signed rank test

was performed: the median of each column was compared to the median of the first column

(all cells). p�<0.05, p��<0.01, p���<0.001.

(TIF)

S6 Fig. Boolean analysis. (A) Frequencies of p24+ cells in all cells and in cell subsets express-

ing 0, 1, 2, 3 or 4 markers in samples from 8 viremic individuals (same as in Figs 4 and 5).

Analyses were performed on cells expressing CD25/CD95/HLA-DR/Ki-67 (top panel) and
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PD-1/TIGIT/LAG-3/Tim-3 (middle panel). (B) Frequencies of p24+ cells in all cells and in cell

subsets expressing 0, 1 or 2 immune checkpoint molecules (PD-1/TIGIT) in samples from 11

virally suppressed individuals (same as in Fig 6). Each sample is represented by a unique color-

coded symbol. For statistical analyses, Wilcoxon matched-pairs signed rank test was per-

formed: the median of each column was compared to the median of the first column (all cells).

p�<0.05, p��<0.01, p���<0.001.

(TIF)

S7 Fig. Contribution of different subsets to the pool of p24+ cells. (A) Pie charts comparing

the relative contributions of different subsets to the total pool of CD4 T cells (all cells, left) and

to the pool of p24+ cells (right) in samples from viremic individuals. Contributions of memory

subsets and effector subsets are represented. (B) Pie charts comparing the relative contribu-

tions of different subsets to the total pool of CD4 T cells (all cells, left) and to the pool of p24+

cells (right) in samples from ART-suppressed individuals. Contributions of memory subsets

are represented.

(TIF)

S8 Fig. Frequencies of CD4 T cell subsets before and after stimulation with PMA/ionomy-

cin. (A) Representative dot plots showing the distribution of memory CD4 T cell subsets after

24h of resting or after 24h of stimulation with PMA/ionomycin + BFA in one representative

ART-suppressed individual. (B) As in A) for LAG-3, Tim-3, PD-1 and TIGIT. (C) As in A) for

α4β7 and α4β1.

(TIF)

S9 Fig. Markers showing significant changes of expression following stimulation. (A) Rep-

resentative dot plots showing the levels of expression of CXCR3/CCR4/CCR6 after 24h of rest-

ing or after 24h of stimulation with PMA/ionomycin + BFA in one representative ART-

suppressed individual. (B) As in A) for CXCR5 and CD25. (C) As in A) for CD3 and CD4. Of

note, the MFI of CD3 decreased after stimulation but the frequency of CD3+ cells remained

unchanged.

(TIF)

S10 Fig. p24+ cells from ART-suppressed individuals are not enriched in cells expressing

high levels of CD32. Cryopreserved PBMCs from 4 ART-suppressed individuals were stimu-

lated with PMA/ionomycin + BFA for 24h. (A) Representative dot plots of the CD32 staining

in gated CD3+CD8- lymphocytes, CD3- lymphocytes and CD3-CD14+ monocytes, in the

absence of stimulation (NS) and after PMA/ionomycin stimulation. (B) Dot plots showing

CD32 expression in p24+ events (black) and in all cells (grey).

(TIF)

S11 Fig. p24-producing cells from ART-suppressed individuals are highly enriched in

CD45RA-α4β1+TIGIT+ cells. Frequencies of p24+ cells in all cells and in each gated cellular

subset in samples from 8 ART-suppressed individuals. Each sample is represented by a unique

color-coded symbol. Undetectable measurements are represented as open symbols. Mean

folds-enrichment compared to all cells are indicated at the top of each bar. For statistical analy-

ses, Wilcoxon matched-pairs signed rank test was performed: median values of each column

were compared to the median of the first column (all cells). p�<0.05, p��<0.01.

(TIF)

S12 Fig. Comparison of two permeabilization buffers for the detection of p24-producing

cells by HIV-Flow. Dot plots showing the detection of p24+ cells in 2 samples, using 2 experi-

mental conditions. Purified CD4 T cells from a viremic individual were rested for 18 hours,
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while purified CD4 T cells from an ART-suppressed individual were stimulated with PMA/

ionomycin for 24h. The permeabilization step was performed either with the PermWash

Buffer (BD) or with the FoxP3/Transcription Factor Staining Buffer Set (eBioscience).

(TIF)

S13 Fig. Gating strategy used in HIV-Flow. Example of the gating strategy used for a repre-

sentative sample following PMA/ionomycin stimulation of CD4+ T cells obtained from an

ART-suppressed individual.

(TIF)

S1 Table. Frequencies of infected cells measured by different assays in samples from ART-

suppressed individuals.

(DOCX)

S2 Table. Panels of antibodies used for phenotyping of p24+ cells.

(DOCX)

S3 Table. Median fold differences in the frequencies of p24+ cells and all cells expressing a

given cellular marker.

(DOCX)
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