Poster Session # P-G7

22nd Conference on

Opportunistic Infections

February 23 - 26, 2015

Retroviruses and

Seattle, WA, USA

Abstract # 491

HIV DNA and Neurocognitive Impairment in Older and Younger Subjects on Suppressive ART

Michelli Faria de Oliveira¹, Ben Murrel¹, Josué Pérez-Santiago¹, Milenka Vargas¹, Ronald J Ellis², Scott Letendre², Igor Grant², Davey M. Smith³, Steven Paul Woods⁴, Sara Gianella¹.

¹University of California San Diego, La Jolla, California, USA, ²HIV Neurobehavioral Research Center, San Diego, California, USA, ³ Veterans Affairs San Diego Healthcare System, San Diego, California, USA and ⁴University of Houston, Texas, USA.

University of California San Diego 9500 Gilman Drive MC 0679 La Jolla, CA 92093-0679, USA Tel: (858) 552-8585 #2673 Fax: (858) 552-7445

E-mail: mfariadeoliveira@ucsd.edu

Michelli Faria de Oliveira, Ph.D.

Background

- Older HIV-infected adults have a higher risk of developing neurocognitive impairment.
- The underlying mechanisms are poorly understood.

Objective

To address viral and immunological factors associated with neurocognitive impairment during suppressive antiretroviral therapy (ART) in older and younger HIV-infected adults.

Methods

- Paired blood and cerebrospinal fluid (CSF) from HIV+ adults on suppressive ART (<50 copies/ml blood plasma):
 - N=26 (59.1%) older adults (>50 years)
 - N=18 (40.9%) younger adults (<40 years)
- Levels of HIV DNA (pol) in peripheral CD4 T cells:
- by droplet digital PCR (ddPCR)
- Levels of inflammatory markers in CSF and blood plasma:
 - by ELISA: sCD163 and neopterin
 - by Mesoscale: MCP-1, IL-8, IL-6 and TNF-α
- Neurocognitive functioning:
 - clinical battery of 7 ability areas (Frascati criteria)
 - Global deficit score (GDS): >0.5 = neurocognitive impairment
- Differences between age groups (Mann-Whitney U test) for:
 - HIV DNA, inflammatory markers, GDS, CD4 counts, estimated duration of infection [EDI])
- Associations (regression analysis adjusted for EDI)
 - GDS versus HIV DNA, inflammatory markers and clinical variables separately by age groups

Acknowledgments

This work was supported by the Department of Veterans Affairs and grants from the National Institutes of Health: R01-MH073419, P30-Al100665, DA034978, Al43638, Al074621, Al106039, 7-UM1 Al068636-07, P30-Al027763, UL1TR000100, S10 RR31646. CNPg-Brazil, Interdisciplicinary Research Fellowship in NeuroAIDS (R25-MH081482), HNRP developmental grant PST-HN39

Results

After adjusting for EDI, older individuals have higher levels of monocyte activation and trafficking in blood (sCD163) and CSF (sCD163 and MCP-1) compared to their younger counterparts. **See table.**

FABLE. Clinical and demographic characteristics, HIV DNA and cytokine levels between age groups.

Parameters n=44	Younger group (N= 18)	Older group (N= 26)	Mann- Whitney p	Multivariate (EDI) p
Education (years) ^a	13 [12,13]	13.5 [12,16]	0.12	
EDI (years) ^a	8.4 [2.6, 12.6]	17.4 [15.2,21]	<0.01	
Current CD4 ^a	606 [494, 685]	722 [463.3, 901.3]	0.48	
Nadir CD4 ^a	216.5 [121.8, 321.8]	231 [92, 317.3]	0.73	
CNS Penetration Effectiveness ^a	7 [7, 7.8]	7 [6, 8]	0.5	
GDS^a	0.2 [0.1, 0.7]	0.4 [0.2, 0.8]	0.24	
HIV DNA (cps/million cells; log ₁₀)	2.4 [1.9, 2.6]	2.5 [1.9, 2.7]	0.96	0.21
<u>Cytokines</u>				
<u>CSF</u>				
sCD163 (ng/mL)	36.3 [24.6, 39.4]	61.3 [50.5, 69.1]	<0.01	0.01
IL-6 (pg/mL)	1 [0.7, 1.2]	1 [0.7, 1.2]	0.25	0.12
IL-8 (pg/mL)	40.1 [34, 47.4]	47.4 [42.7, 54.9]	0.03	0.21
MCP-1 (pg/mL)	328.2 [262.9, 413.3]	467 [327.3, 490.4]	0.03	0.06
Neopterin (ng/mL)	1.4 [1.3, 2.5]	1.9 [1.3, 2.4]	0.54	0.43
<u>Plasma</u>				
sCD163 (ng/mL)	982.6 [786.8, 1441.8]	1501.9 [962.5, 1853.8]	0.07	0.03
IL-6 (pg/mL)	0.7 [0.6, 1.3]	0.9 [0.7, 1.2]	0.03	0.16
IL-8 (pg/mL)	5.1 [3.4, 7.6]	5.9 [4.8, 7.2]	0.17	0.19
TNF- α (pg/mL)	1.6 [1.1, 2.1]	1.5 [1.2, 1.8]	0.73	0.99
MCP-1 (pg/mL)	109.7 [85.2, 137]	131.9 [113.8, 157.3]	0.01	0.10
Neopterin (ng/mL)	2.4 [2, 3.2]	2.5 [1.9, 3.1]	0.86	0.46

^aData shown as median [interquartile range]

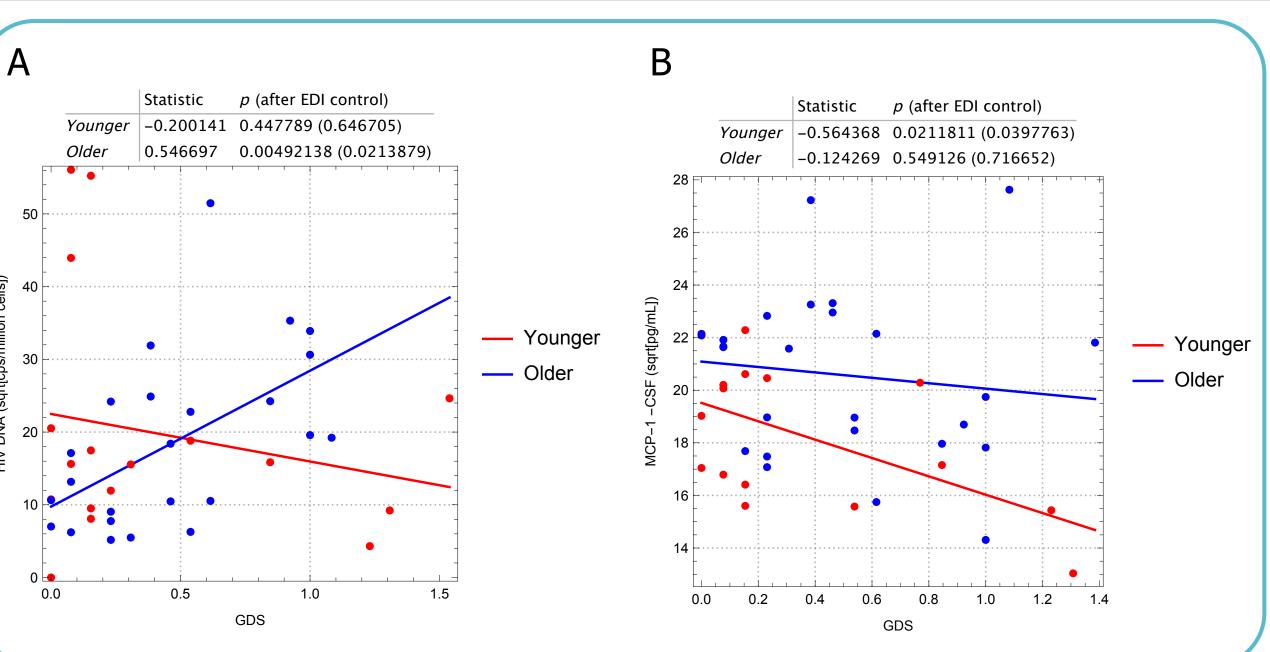


Figure: Predictors of neurocognitive impairment across age groups.

- Higher levels of HIV DNA in blood CD4+ T cells were associated with impairment (p=0.003) in older individuals (but not in younger). **Figure 1A.**
- Lower levels of MCP-1 in CSF were associated with impairment (p=0.04) in younger individuals (but not in older) Figure 1B.

- No association between GDS and any of the other tested variables in any age group (p>0.1).
- Higher levels of HIV DNA blood CD4+ T cells (p=0.004) in older and lower levels of MCP-1 (CSF) (p=0.02) in younger were both associated with deficits in executive functioning.

Conclusions

- Higher HIV DNA levels in blood CD4+ T cells might indicate higher total HIV DNA in brain.
- Correlates of neurocognitive impairment differ between younger and older adults, which suggest future treatment strategies for HIVassociated neurocognitive disorders may need to be based on age.