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Humanimmunodeficiency virus 1 (HIV-1) isaretrovirus with a ten-kilobase

single-stranded RNA genome. HIV-1must express all of its gene products from asingle
primary transcript, which undergoes alternative splicing to produce diverse protein
products thatinclude structural proteins and regulatory factors'* Despite the critical
role of alternative splicing, the mechanisms that drive the choice of splice site are
poorly understood. Synonymous RNA mutations that lead to severe defectsin
splicing and viral replication indicate the presence of unknown cis-regulatory
elements®. Here we use dimethyl sulfate mutational profiling with sequencing
(DMS-MaPseq) to investigate the structure of HIV-1RNA in cells, and develop an
algorithm that we name ‘detection of RNA folding ensembles using expectation-
maximization’ (DREEM), which reveals the alternative conformations that are
assumed by the same RNA sequence. Contrary to previous models that have analysed
population averages®, our results reveal heterogeneous regions of RNA structure
across the entire HIV-1genome. In addition to confirming thatin vitro characterized’
alternative structures for the HIV-1Rev responsive element also exist in cells, we
discover alternative conformations at critical splice sites that influence the ratio of
transcriptisoforms. Our simultaneous measurement of splicing and intracellular RNA
structure provides evidence for the long-standing hypothesis®® that heterogeneity in
RNA conformation regulates splice-site use and viral gene expression.

Previous work* on the genome-wide RNA structure of HIV-linvitroand
invirion has provided a population-average model, with the underlying
assumption that every molecule within the population assumes the
same conformation. However, previous in vitro studies>*'° have identi-
fied alternative conformations for the HIV-1 Rev responsive element
(RRE) and 5" untranslated region (UTR), whichraises the possibility that
alternative structures have roles in the export of viral RNA from the
nucleus and packaginginvirions. Toresolve the fundamental question
of whether RNA structure affects splicing, itis necessary to distinguish
multiple conformations for the same sequencein cells. We developed
the clustering algorithm DREEM, and here we demonstrate that we can
quantitatively detect alternative RNA structures.

DREEM starts with single-molecule chemical probing data—in
our case, derived from DMS-MaPseq". Dimethyl sulfate (DMS) adds
methyl groups to the unpaired adenines and cytosines of RNA mol-
ecules (Fig.1). The presence of amethyl adduct is read during reverse

transcription using TGIRT-1II, which marks these sites by incorporat-
ing random mutations in the complementary (c)DNA. PCR amplifies
the cDNA product and attaches sequencing adapters to the DNA, fol-
lowed by massively parallel sequencing. Each of the resulting reads
isrepresented as a binary readout of mutations and matches, which
isthe input for DREEM (Extended Data Fig. 1a). As DMS-MaPseq has
anegligible background error®, the mutations observed on a single
DNA molecule correspond to the DMS-accessible bases on the parent
RNA molecule. The two key challenges for detecting heterogeneity
are: (1) that DMS modification rates are relatively low (for example,
anopenbase has a probability of about 2-10% of being modified); and
(2) that the rate of DMS modification per open base is sensitive to the
local chemical environment, such that not all open bases are equally
reactive to DMS. Traditional approaches to determining RNA structure
combine chemical probing data into a population-average signal per
base, which obscures any underlying heterogeneity. By contrast, the
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Fig.1|Development and validation of DREEM algorithm for analysis of
alternative RNA structures. a, Schematic of combining DMS-MaPseq data
with the DREEM algorithm to detect alternative RNA structures. EM,
expectation-maximization. b, Structural model of in vitro-transcribed and
folded structurelandstructure 2, as determined by DMS-MaPseq. Nucleotides
are colour-coded by normalized DMS signal. ¢, DMS mutational fraction per

DREEM algorithm groups sequencing reads issued from each structure
into distinct clusters, by exploiting information contained in the obser-
vation of multiple modifications onsingle molecules. Theoretically, if
two individual bases are DMS-reactive in the population average but
are never both mutated on a single read, it follows that at least two
conformations are present. DREEM identifies patterns of DMS-induced
mutations on reads and clustersinamathematically rigorous manner
using an expectation-maximization algorithm (Fig. 1a, Extended Data
Fig.1a). The DMS modification rate per base for each cluster (or struc-
ture) is determined by iteratively maximizing alog-likelihood function
to find and quantify the abundance of alternative structures directly
fromthe dataset. The binary nature of the readouts enables the use of
amultivariate Bernoulli mixture model to compute the log-likelihood
function'. The DMS modification pattern from each cluster is used to
create asecondary structure model.

Our control experiments on denatured RNA indicated that TGIRT-111
is unable to read-through mismatches located within three nucleo-
tides (nt) of each other (Extended Data Fig. 1b). To account for this
observation, we modified the log-likelihood function of the standard
multivariate Bernoulli mixture model (Extended Data Fig. 1a). Upon
convergence of the clustering, the DMS signal from each cluster was
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nucleotide and quantification of structureland structure 2, determined by
DREEM clustering for amixing ratio of 25% (structure 1) to 75% (structure 2)
before DMS modification.d, Proportion of structure 1and structure 2
measured by DREEM clustering after in vitro transcription, mixing and
DMS-MaPseq. The expected (E) and observed (O) ratios are shown from
n=1experiment for each mixing proportion.

used asa constraintin the program RNAstructure. To our knowledge,
DREEM is unique among algorithms for RNA folding ensembles™
because DREEM directly clusters the experimental data. Clustering
before the generation of asecondary structure model enables the dis-
covery of new RNA structures, in contrast to previous work™, Purely
computational algorithms rely on suboptimal folding to create varia-
tion that is not captured by minimum free energy calculations. How-
ever, using experimentally derived constraints is preferable to using
randomly generated constraints®. Moreover, DREEM does not rely on
thermodynamics for detecting and identifying alternative conforma-
tions, and therefore can be used on in vivo data to model RNA folding
inthe presence of cellular factors, the energetic contributions to RNA
structure of which are unknown.

Tovalidate DREEM, we first transcribed two RNA moleculesin vitro
that are nearly identical in sequence but form different structures
(which we refer to as structure 1and structure 2). These sequences
were designed on the basis of a known RNA structure that is changed
by asingle nucleotide variant (riboSNitch) inthe human gene MRPS21%.
We experimentally mixed the RNAs from both structures in varying
proportions and generated DMS-MaPseq data. DREEM clustered the
DMS data and successfully identified the two structures, down to a
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Fig.2|Theformation of alternative structures at HIV-1RRE isdriven by
intrinsic RNA thermodynamics. a, HIV-1RRE structural models derived from
DMS-MaPseq followed by DREEM usingin vitro-transcribed structure-locked
RRE five-stem (mut A) and four-stem (mut B) mutants. Bar graphsrepresent
expected and observed mixing ratios of four-stem and five-stem structures
fromn=2experiments. b, Normalized DMS signal for RRE five-stem and
four-stemstructures observedin vitro, invirionandinvivo from CD4" T cells
infected with HIV-1y,, ;, identified by DREEM clustering. The positions

mixing ratio of 6% (Fig. 1b—d, Extended Data Fig. 2). We also tested
DREEM using the in vitro-transcribed and DMS-modified adenosine
deaminase (add) riboswitch, which undergoes a conformational shift
upon binding of adenine??, We found that add structures that promote
translation, which are stabilized by adenine, increased from18% to 89%
of the structures detected by DREEM upon addition of 5 mM adenine
(Extended DataFig. 3).

We then focused on the RRE of HIV-1,,.;, a multi-stem structure
that binds to the viral protein Rev and enables the nuclear export of
unspliced and partially spliced HIV-1RNA. Previous studies’ physically
separated distinct RNA conformations by native gel electrophoresis,
andrevealed two alternative structures for RRE invitro: afive-stemand
afour-stem structure. Specific mutations stabilize either of the alter-
native conformations®. DREEM accurately identified the DMS signal
for mixtures of five-stem structures (referred to here as mut A) and
four-stemstructures (referred to here asmutB), and robustly quantified
their mixingratios (Fig.2a). Notably, we found that the in vitro-folded
wild-type RRE sequence exists as amixture of about 27% four-stem and
about 73% five-stem structures (Extended Data Fig. 4).

We next applied DREEM to the study of HIV-1 RNA structure in pri-
mary cells, which is possible as DMS is cell-membrane permeable?. We
infected activated CD4" T cells with HIV-1, ,5, and performed chemical
probing in vivo and in virions (Extended Data Fig. 5a). We discovered
that the RRE sequence forms the same alternative structures regardless
ofthe environment (invitro, in vivo orin virion), favouring the five-stem
fold (Fig. 2b). These results indicate that the alternative secondary
structures of RRE are driven largely by intrinsic RNA thermodynamics as
opposed to particular features of the cellular environment. Moreover,
these results underscore the ability of DREEM to robustly identify RNA
folding ensembles fromin vivo data (Fig. 2b, ¢, Extended Data Fig. 5b)
and to quantify the abundance of the alternate conformations.

We nextexamined therole of RNA structurein HIV-1splicing. Alterna-
tive splicing is the major mechanism that is used by HIV-1to express all
of its gene products from a single type of pre-mRNA (that is, genomic

highlighted are examples of bases that change pairing state between the two
structures, showninboth the DMSsignal and the folded RNA structures of the
four-stem and five-stem structures. Percentages for each clusterare
determined by DREEM from representative samples of n=2 (forin vivo and
invitro), or fromn=1forinvirion. c,Scatter plots of clustering results for
n=2biological replicates (top two plots) and the variation in DMS signal
between the different two clusters (four-stem versus five-stem, bottom).

viral RNA). Splice site use must be regulated to produce the correct pro-
portion of HIV-1transcripts. HIV-1transcripts spliced at the A3 acceptor
splice site are the only source of mRNA for the viral transcriptional
activator Tat'2

We discovered alternative structures that dictate the splicing out-
come at the A3 splice site, and therefore regulate the abundance of
the Tat transcript. First, the structures that form for the HIV-1,,; A3
splice site in CD4" T cells differ markedly from previously proposed
models based on population-average data*. Notably, the two main
conformations identified by DREEM either occlude (about 40%; clus-
ter 1) or expose (about 60%; cluster 2) the polypyrimidine tract and
A3 splice site at which the U2AF heterodimer binds (here we abbrevi-
ate the tract and splice site together as A3ss) (Fig. 3a). We termed the
occludedstructure the A3 stemloop (A3SL). The A3SLis not specificto
the HIV-1,,;and forms in HIV-1,,cin HEK293T cells (cluster 1in Fig. 3b).
Notably, we detected strong heterogeneity for the A3ss folded in vitro,
demonstrating that thisregion has anintrinsic ability to form multiple
conformations and that the A3SL is thermodynamically stable in the
absence of proteins (Extended Data Fig. 6).

To perturb the population of RNA structures and measure the effect
on splicing, we took advantage of the location of A3ss in the vpr cod-
ing region, which is dispensable for growth in cell culture. We used a
strain (Avpr HIV-1y,c) with a pre-mature stop codon in vpr to ensure
that the observed effects were not due to loss of function of Vpr. To
test the effect of structure on splicing, we designed mutations dis-
tal from the splice site sequence, avoiding known protein-binding
regions. The mutants A3SL mutl, mut 2and mut 3 are predicted to ther-
modynamically stabilize A3SL and decrease splicing at A3ss (Fig. 3c).
Using a deep-sequencing-based HIV-1splicing assay?, we found that
all three stabilizing mutants result in lower rate use of A3ss (Fig. 3d),
substantially decreasing expression of Tat transcripts relative to a
background strain.

By contrast, mutations in the same sequence region that are pre-
dicted to havelittle effect on the stability of A3SL—and therefore little
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Fig.3|Alternative RNA structures at the A3 splice acceptor siteregulate
splicesiteuse. a, Structural models of the A3ss from CD4" T cells infected with
HIV-1y,45, made from the clustering outputs of DREEM. Proportions of each
clusterarearange fromn=4experiments (1 HIV-1y,,;and 3 HIV-1,0).
Nucleotides are colour-coded by normalized DMS signal. The splice site is
highlightedin abluebox; aregion that base-pairs to the splice siteis shownin
green. b, Scatter plots comparing alternative structures between CD4" T cells

effect on splicing—increased A3ss use relative to the parental strain
(A3SL mut 4) (Extended Data Fig. 7a, b). To further test the inhibitory
role of A3SL, we designed a compensatory mutant to shift the popu-
lation towards the A3SL in the sequence context of the A3SL mut 4.
Consistent with A3SL inhibiting splicing, the compensatory mutant
(A3SL mut 5) uses A3ss about 10-fold less frequently than Aupr HIV-1,,6
(Extended Data Fig. 7b). The percentage of the A3SL cluster for each
mutant had aninverse relationship with the overall use of the A3 splice
acceptor site (Extended Data Fig. 7c). To understand the origin of the
increasein splicing, we probed A3SL mut 1and A3SL mut 4 and found
that these mutations resulted in the formation of an unanticipated
alternative structurein cluster 2 of both mutants (Extended DataFig. 8a,
b). Cluster 2was present at 35% for A3SL mut1and 53% for A3SL mut 4.
This result demonstrates that thermodynamic predictions alone are
incomplete. The unanticipated structures alter the accessibility of
multiple nearby protein-binding sites. These results indicate that the
intrinsic ability of RNA to form alternative structures canregulate splic-
ingeither by directly occluding U2AF binding sites or by modifying the
accessibility of nearby splicing enhancer and silencer elements; the
net effect of this regulation results in up to about a100-fold changein
abundance of HIV-1Tat transcripts.

To test whether the formation of alternative structures is a general
property of HIV-1RNA, we prepared a genome-wide DMS-MaPseq
dataset from HEK293T cells transfected with HIV-1,,; (Extended Data
Fig.9a). We used DREEM clustering on overlapping windows spanning
the entire genome and applied a stringent Bayesian information criteria
(BIC) test to determine whether the data could be separated into two
distinctstructure signals®*. Notably, both the RRE and A3ss match the
results obtained by specific PCR with reverse transcription (RT-PCR)
(Extended DataFig. 9b, c).

More than 90% of windows with coverage of >100,000 sequenc-
ing reads passed the BIC test for 2 clusters, indicating the presence
of heterogeneity in RNA structure across the entire HIV-1 genome.
We quantified the variability in reactivity of residues in each window
using the Gini index metric, which is used to estimate the stability of
the RNAstructure®. AGiniindex close to zeroindicates arelatively even
distribution of DMS modifications, and occurs when RNA is unfolded
or when RNA structure is highly heterogeneous. A Giniindex close to
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n=2experiments. The blue dotted line is the identity line; R*is Pearson’s R%.

¢, Mutantdesign. Allmutants were predicted to thermodynamically stabilize
the A3SL.d, Fold changeinsplicesite use, compared to Aupr HIV-1y,,c (n=4 for
A3SLmutland mut3; n=3for A3SL mut2). Left, splice site use of singly spliced
transcripts. Right, multiply spliced transcripts. Dataare reported as points,
withmeananderrorbarsrepresenting thes.d.

oneoccurs whenasubset of residues is strongly protected from DMS,
andindicates a highly stable structure. We also computed a Pearson’s
correlation coefficient for allwindows that had alternative structures
tomeasure how different the two structures were fromeach other. The
low Pearson correlation (R*><0.3) and low Giniindex (<0.5) indicate that
that relatively unstable, alternative structures form across the entire
genome (Fig.4a)—including alternative conformations for a conserved
structure® in the 4-kilobase (kb) gag-pro-pol region (Extended Data
Fig.9d), whichis present exclusively inunspliced transcripts. The small-
estminor cluster that we observed was present at 20% and was located
inthe env coding region (Extended Data Fig. 10a).

The widespread alternative structure of the HIV-1 genome stood
in contrast to the small nuclear RNA Ul probed in vivo and U4 and U6
core-domain RNA probed in vitro, both of which exhibited minimal
heterogeneity (Extended DataFig.10b, c). These RNAs have stable struc-
tures, as previously determined by X-ray crystallography? and nuclear
magnetic resonance®, respectively. Asacontrol against over-clustering,
we simulated reads on the basis of the HIV-1 population-average
DMS signal with no relationship between mutations, and observed
no regions that passed the BIC test for two clusters (Extended Data
Fig.10d). As expected, we observed an inverse relationship between
the Gini index and Shannon entropy, an alternative measure of RNA
structure (Extended Data Fig.11a, b). We used the whole-genome data
to identify previously validated structures such as the transcription
activationregion, which was detected in one conformation (Extended
Data Fig. 11c). We found structure heterogeneity at most splice sites,
including A4a, A4b, A4cand A5 (Extended DataFig.11d). Together, these
results suggest splice-site occlusion as a general mechanism through
which HIV-1tunes alternative splicing.

In summary, our results indicate that the thermodynamic ability of
RNA to form alternative conformations at critical splice sites enables
HIV-1to express different genes from the same primary transcript. This
may be necessary from an evolutionary perspective for HIV-1to set
an upper limit for splice-site use independent of splice enhancer and
suppressor recognition. Splicing repression by RNA structure could
ensure thatafraction of molecules remain unspliced, which is essential
for packaging and transmitting the full-length HIV-1genome. Finally,
DREEM clustering permits the study of alternative RNA structures at



Gini index

< < o

(2]
2.

Structure
L]
s.‘
L X+
&
o
09 ©
‘S

RRE A7

i
V1 nef (GFP)
.

F i

3 UTR

@ Major cluster
Minor cluster

g

RpEp =] E—

2 VOV

o
2
e (.

i
;
of W 1000 2000 3000 4000 6000 7,00 §000 9,000
x L !
£ Tog :
2 £ " !
S = " ) Of
& Y
5 oo4 ; -
i [
" u v
02 frth o
': ::::: : : : I Low coverage
]
™ 1000 2,000 _ 3,000 _ 4000 000" 6,000 7,000 ' 8000 9000 JOnecluster
mR%><0.3
| ] BR
1,000 2000 3000 4000 5000 6000 7,000 8000 9,000

Genome position

Fig.4|Landscape ofheterogeneity in HIV-1RNA. HIV-1genome organization,
highlighting the UTR, coding regions, major splice donor and acceptor sites
and RRE overlaid onastructural variability plot for the library generated from
HEK293T cells transfected with HIV-1,,c. Each dot represents an 80-nt window
of DMS-MaPseq data used for DREEM with a maximum of 2 clusters from
n=1experiment. The cluster for each window with a higher Gini coefficientis
plotted ontopinorange, and the cluster with alower Gini coefficient is plotted

single-nucleotide resolution in living cells. The DREEM approach has
wide range of potential applications, including elucidating the role of
RNA structure in human alternative splicing—where changes of splice
site use of as little as twofold are associated with multiple diseases?°.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and investigators were not blinded
to allocation during experiments and outcome assessment.

DREEM clustering description

Definitions of symbols: N, total number of reads; D, length of region
of interest in the reference; X = {x,, ..., X,}, set of all observed reads; S,
setof all allowed (observable) reads; K, number of clusters; 1, mixing
proportion of cluster k. w={m,, ..., I} such that Zf:l m=lLp={p,...,
P inwhichp, = (i, ..., e -, Bip) Y =1, ..., D is the mutation profile
of cluster k and in which ; is the mutation rate of base i in cluster k.
Y. thelatent Boolean variable representing the assignment of read n
to cluster k. z,, the expectation of y,, or the probability that read n
belongsto cluster k. i, a, nucleotide index.

The sequencing datafrom asample were mapped to the correspond-
ing reference genome using the Bowtie2 aligner®. The data observed
X consists of Nreads {x,, ..., X,}, each containing D nucleotides. Each
readx, € Xrepresents adistinct RNA molecule that was DMS-modified,
reverse-transcribed and amplified. The DMS modifications are read
out as mutations. A read x,, can then be represented as a vector of D
bits (x,, ..., X,p) Or a ‘bit vector’ in which x,; = 1if base x,; is mutated, or
0 otherwise.

As DMS modificationis far fromsaturating (thatis, notevery acces-
sible base of a single molecule is modified), each open base inan RNA
molecule has only a small probability (2-10%, depending on the DMS
concentrations used) of being modified. External factors unrelated to
the secondary structure (such as 3D conformation or local chemical
environment) will affect this probability. As a consequence of this, a
distinct mutation probability z will be associated with each base of
theread. We assume the mutation probabilities are independent from
each other. This assumption allows us to consider each read as a ran-
dom draw from a Bernoulli mixture model. In the event that the RNA
molecules assume more than one structure, each structure willappear
inthe dataasacollection of reads (that s, a cluster), characterized by
its own Bernoulli mixture model.

IfKis the number of structures presentin our sample, then the model
isparameterized by: the mutation probabilities g ={p,, ..., p, in which
W=y, ..., ) arethe mutation probabilities of cluster k, and the mix-
ing proportions m={m, ..., m;} of the K clusters, in which m, quantifies
the proportion of reads that belong to cluster k.

The expectation-maximization algorithm used by DREEM for clus-
teringassumes a Bernoulli mixture model'>. Therefore, the probability
(Pr) ofabase not being mutated in cluster kis: Pr(x,;= Olp) =1- 11, and
the probability of abase being mutated in cluster kis: Pr(x,;=1Ip,) = ity
Therefore, the Bernoulli mixture model gives us the probability of
observing aread x,, from cluster k as:

D
Prx,lp,) = I piri(1- g, )i (o)
i=1

We observed that in DMS-MaPseq data, reads that contain muta-
tions within three bases of each other are veryrare,and occur atafre-
quency close to the sequencing error rate (Extended Data Fig. 2); that
is, the bit vectors 001001000,001010000 and 001100000 are greatly
underrepresented. This is probably due to the reverse transcriptase
falling off the template when encountering adjacent methylations.
Truncated reads do not get amplified during PCR, and therefore are
notrepresented when sequenced. To account for this bias, we remove
all rare reads containing mutations within three bases of each other
and we compute S, the set of all reads with allowable mutations in
{0,1}” that can be sequenced. Therefore, equation (1) is modified as
follows:

7 ni(1- 1=Xp;
iy ) ™ A= )™
Y cves T () - )

In the initial step of the expectation—-maximization algorithm, the
model parameters g and m are randomly initialized. After the initiali-
zation of the parameters, the expectation step and the maximization
step are executed one after the other in aloop until the log likelihood
converges.

Two calculations are made in the expectation step: first, the respon-
sibilities of the cluster are computed—that is, the reads are assigned
probabilistically to clusters:

Pr(x,p,) =

Pr(x,lp, )1,

k= -
n Zle Pr(x,/p)m;

Here z,, is the probability that read n belongs to cluster k. It can also
be defined as the posterior probability, or responsibility, of cluster
k given read n. Second, the expected complete-data log-likelihood
of observing the data X and latent variables Y ={Y,,} given the model
parameters is computed:

N K
Ey_,InPr(X, Y|p, m) = z:lckzlznkln{nkPr(xnluk)}

In the maximization step, the model parameters are re-estimated
by maximizing the expected value of the likelihood with respect to
the parameters {mr} and {,;}. The mixing proportion of each cluster s
then updated, using:

N
M, = znzlznk
KN
The mutation profile y, of each cluster is then updated by solving
the following system of equations for each k:

D . —x;
Y ves Xa Moy () (= p )™ _ Tn1 Zana Ya
ers ,'D:I(ﬂki)xi(l_ﬂki)l_xi zngnk

These equations are derived by setting the derivatives of the expected
complete-datalog-likelihood function to zero.

After the expectation-maximization clustering algorithm has fin-
ished running, the reactivity of the bases in each cluster is given as
input to RNAstructure®for secondary structure prediction. The DMS
signalis normalized such that the median of the top ten most-reactive
positions is set to 1.0. To protect from spurious outliers, we use 90%
winsorization, effectively capping the reactivity at 1.0. Final visualiza-
tions of RNA secondary structure were created with VARNA®,

The parameters used by the DREEM pipeline were as follows: the
minimum number of iterations of the expectation-maximization
algorithm to run before checking for convergence of the likelihood
(num_its), 300; the number of expectation-maximization algorithm
runs (num_runs),10. num_runsindependent runs of the expectation—
maximizationalgorithm are carried out to ensure that the results from
the algorithm are robust to theinitialization of the model parameters
and arerepeatable.

The convergence threshold (conv_thresh) is 1. The expectation-
maximization algorithm is stopped when log(likelihood);ceration=n+1
- log(likelihood);ration-» < cOnv_thresh after num_its iterations have
been completed.

Thesignalthreshold (sig_thresh)is 0.005. Only mutationrates greater
than sig_thresh are considered. All bases with a population-average
mutation rate less than sig_thresh are set to O in every bit vector.

We used BIC=log(N) x D x K-2log(likelihood). To test for over fitting
the data, we checked whether the expectation-maximization algorithm



passes two clusters by using the BIC test. If BIC,._, > BIC,._,, the algorithm
stops. Otherwise, the algorithm moves onto K=3.

Bit vectors are filtered out if they do not satisfy one of the follow-
ing four criteria: informative bits threshold (info_thresh) of 0.05-0.2.
Weset x,;to * if base i is not covered by read x, and to ‘?’ if it is of low
quality (defined as having a Phred quality score of less than 20). If the
fraction of non-informative bits (V,“?”and N) in the bit vector is greater
thaninfo_thresh, the bit vector is removed. After this filtering, all the
non-informative bits are set to O in the remaining bit vectors. We set a
maximum number of mutations such thatif the number of mutationsin
thebit vectoris greater than three times the standard deviation of the
mutationdistribution per read, the bit vector isremoved. Invalid bit vec-
torsrepresent rare occurrences of bit vectors with adjacent mutations
(within 3 nt) are considered to be part of background noise (Extended
DataFig.2) and are filtered out. There are also rare instances in which
abitvector consisted of amutation (1) right next toanon-informative
base such as ? or ‘?”. These reads were also filtered out. Because DMS
modifies only A and C, these constitute informative bases: mutations
atTand GaresettoO.

Celllines

HEK293T cells were obtained from ATCC. The cells tested nega-
tive for mycoplasma by LookOut Mycoplasma PCR Detection kit
(Millipore-Sigma). The cells were maintained in Dulbecco’s Modified
Eagle Medium (ThermoFisher Scientific) supplemented with 10%
heat-inactivated fetal bovine serum (ThermoFisher Scientific) and
100 U/ml penicillin-streptomycin (ThermoFisher Scientific).

Plasmid construction

HIV-1y,,; infectious molecular clone (pNL4-3) was obtained from the
NIH AIDS reagent programme®. HIV-1y, is a full-length HIV-1 proviral
plasmid, modified to replace anon-essential gene (nef) with GFP (Gen-
Bank accession code: JQ585717.1). A Vpr-truncated derivative (Aupr
HIV-1,,,c) was constructed by generating an overlapping PCR with a
C-to-T mutation, and thus a stop codon after Vpr amino acid 20. This
PCR product inserted into HIV-1,,; using Agel and Sall. All of the A3
splice site mutants were generated via overlapping PCR and inserted
into a Aupr HIV-1yc.

CD4' T cellisolation

Apheresis leukoreduction collars, obtained from the Brigham and
Women'’s Hospital Crimson Core, were used toisolate peripheral blood
mononuclear cellsby lymphocyte separation medium (ThermoFisher
Scientific) density centrifugation. CD4" T cells were isolated by nega-
tive selection using EasySep Human CD4" T cell Enrichment Kit (Stem-
Cell Technologies). CD4" T lymphocytes were cultured at a density of
approximately 1 million cells per millilitre in RPMI-1640 (ThermoFisher
Scientific) supplemented with 10% fetal bovine serum and 100 U/ml
penicillin-streptomycin.

DMS modification of in vitro-transcribed RNA

gBlocks were obtained from IDT for the HIV-1 RRE, RRE mut A and
mut B, control structure 1, control structure 2 and adenoriboswitch.
HIV-1RRE and its mutants correspond to nucleotides 7,759-7,990
based on HIV-1vector pNL4-3 (GenBank accession code: AF324493.1).
Adenosine deaminase (add) riboswitch corresponds to nucleotides
1,590,535-1,590,663 of Vibrio vulnificus strain (GenBank accession
code: CP037932.1). The U4 and U6 core-domain RNA construct is
based on the interface of the U4 and U6 snRNA (GenBank accession
code: 2N7M_X). The gblock also contain 20-nt T7 RNA polymerase
promoter sequence (TTCTAATACGACTCACTATA) onthe 5’ end and a
23-nt sequence (CCGGAGTCGAGTAGACTCCAACA) onthe3’end. The
region of interest was amplified by PCR with a forward primer that
contained the T7 promoter sequence. The PCR product was used for T7
Megascriptin vitro transcription (ThermoFisher Scientific) according

tomanufacturer’sinstructions. Subsequently, 1l Turbo DNase I (Ther-
moFisher Scientific) was added to the reaction and incubated at 37 °C
for 15 min. The RNA was purified using RNA Clean and Concentrator
-5 kit (Zymo). Between 1and 2 pg of RNA was denatured at 95 °C for 1
min. On the basis of the DMS concentration used in the next step, 300
mM sodium cacodylate buffer (Electron Microscopy Sciences) with
6 mM MgCI*" was added so that the final volume was 100 pul. The RNA
was refolded by incubating for 20 min at 37 °C. Then, 0.25-2.5% DMS
(Millipore-Sigma) was added and incubated at 37 °C for 5 min while
shaking at 500 r.p.m. on a thermomixer. The DMS was neutralized by
adding 60 pl B-mercaptoethanol (Millipore-Sigma). The RNA was puri-
fied using RNA Clean and Concentrator -5 kit. For in vitro transcription
of add riboswitch samples, one set of samples were incubated with 5
mM adenine during the refolding stage at 37 °C.

CD4'T cell infection and DMS modification

Fifteen million CD4" T cells were activated by treatment with culture
medium containing 10 pg/mlPHA (Millipore-Sigma) and 100 U/ml IL-2
(ref.**) (NIH AIDS reagent programme; discontinued) for 72 h. The cells
were pelleted and infected in a small volume with supernatant from
HEK293T cells transfected with pNL4-3 for 2 h, then culture mediumis
addedtoachieve a concentration of about 1 million cells per ml. Subse-
quently, 72 h after infection, the supernatant was filtered with a 0.22-pum
filter (Millipore-Sigma) and centrifuged at 28,000gfor1hat4 °Cto pel-
let virions. The cells were washed and resuspended in 15 ml of medium
andplaced onathermomixer at37 °C. Then, 200 pl DMS, or about1.3%
v/v, (Millipore-Sigma) was added and the cells were incubated for 10
min whileshaking at 800 r.p.m. DMS was neutralized by adding 30 ml
PBS (ThermoFisher Scientific) with30% 3-mercaptoethanol. The cells
were centrifuged at1,000g for Sminat4 °C. The cells were washed twice
by resuspending the pellet with15 mI PBS with30% -mercaptoethanol
and centrifugation to pellet. After washes, the pellet was resuspended
in1ml Trizol (ThermoFisher Scientific) and RNA was extracted follow-
ing the manufacturer’s specifications. The virions were resuspended
in 400 pl PBS with 10 mM Tris pH 7 and 3 mM MgCI**. Next, 40 ul DMS
was added and the virions were incubated at 37 °C on a thermomixer
while shaking at 800 r.p.m. for 10 min. The DMS was neutralized with
400 pl B-mercaptoethanol and the RNA was purified using RNA Clean
and Concentrator -5 kit. For unmodified RNA, 15 million CD4* T cells
were isolated and infected in a small volume with supernatant from
HEK293T cells transfected with pNL4-3 for2 h, then culture mediumis
addedto achieve aconcentration of about 1 million cells per ml. Next,
72 h after infection, the supernatant was filtered with a 0.22-pm filter
and virions were pelleted from the supernatant by centrifugation at
28,000g for1h at 4 °C and resuspended in 1 ml Trizol. The cells were
pelleted and resuspended in 1 ml Trizol. RNA was extracted following
the manufacturer’s instructions.

HEK293T cell transfection and DMS modification

Nine hundred thousand cells per well were seeded on a six-well plate
and incubated overnight. Next, 2 pg of plasmid DNA (NL4-3, NHG or
mutant) per well was transfected into the cells using X-tremeGENE
9 (Millipore-Sigma) following the manufacturer’s instructions, and
incubated for 48 h. After incubation, virions were collected from the
supernatant and DMS-modified as in ‘CD4" T cell Infection and DMS
modification’. The cells were washed with PBS, and 2 mI medium with
about1.3%v/vDMSwas addedtoeachwell. The plates wereincubated
at 37 °C for 4 min. The medium containing DMS was immediately
removed and replaced with PBS with 30% [3-mercaptoethanol. Cells
were scraped and centrifuged at 1,000g for 5 min at 4 °C. The pellet
was resuspended in PBS and centrifuged to pellet twice. The pellet
was resuspended in 1 ml Trizol and RNA was extracted following the
manufacturer’s specifications. For unmodified RNA, 900,000 HEK293T
cells were seeded on a 6-well plate and transfected 2 pg of plasmid
DNA (NL4-3,NHG or mutant) per wellinto the cells using X-tremeGENE
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9 following the manufacturer’s instructions. Then, 48 h after trans-
fection, the supernatant was filtered with a 0.22-um filter and virions
were pelleted from the supernatant by centrifugation at 28,000g for
1hat4°Candresuspended in1ml Trizol. The cells were trypsinized,
washed and resuspended in 1 ml Trizol. RNA was extracted following
the manufacturer’s instructions.

RT-PCR with DMS-modified RNA from cells or in vitro
transcription

Betweenland 3 pg of RNA per reaction was used as the input for rRNA
subtraction. First, 1 pl rRNA subtraction mix (3 pg/pl) and 2.5 pl 5x
hybridization buffer (1M NaCl, 500 mM Tris-HCI pH 7.5) were added
to each reaction, and final volume was then adjusted with water to
12.5pl. The samples were incubated at 68 °C and the temperature was
reduced by 1°C/min until the reaction was at 45 °C. Next, 5 pl RNase H
bufferand 2 ul hybridase thermostable RNase H (Lucigen) were added
and water was added until the final volume was 40 pl. The samples
were incubated at 45 °C for 30 min. The RNA was cleaned with RNA
Cleanand Concentrator -5, following the manufacturer’sinstructions
for recovery of fragments >200 nt and eluted in 45 pl water. Then, Sl
Turbo DNase buffer and 1 pl Turbo DNase (ThermoFisher Scientific)
were added to each reaction and incubated for 30 min at 37 °C. Then,
5.1l DNaseinactivation reagent (ThermoFisher Scientific) was added
and incubated 5 min at room temperature with intermittent manual
mixing. The RNA was cleaned with RNA Clean and Concentrator -5 fol-
lowinginstructions for recovery of fragments >200 ntand eluted in15
plwater.Forreverse transcription, 1l of RNAwasadded to 3.5 ul water,
2 ul 5x first strand buffer (ThermoFisher Scientific), 1 pl 10puMreverse
primer, Il dNTP, 0.5l 0.IMDTT, 0.5l RNaseOUT and 0.5 pl TGIRT-II1
(Ingex). The reverse-transcription reaction was incubated at 57 °C for
1.5h, followed by 5min at 80 °C. To degrade the RNA, 1 pl RNase H (New
England Biolabs) was added to the reverse-transcription reactionand
incubated for20 minat37 °C. PCR was performed to amplify the sam-
plesusing either Advantage HF 2 DNA polymerase (Takara) or Phusion
(NEB) for 25-30 cycles according to the manufacturer’s specifications.
The PCR product was purified by QIAquick PCR purification (Qiagen)
andsequenced either on MISeq oriSeq100 (Illumina) to produce either
100-nt single-end reads or 150x150-nt paired-end reads.

Library generation with DMS-modified RNA for HIV-1genome
RNA structure

Extracted DMS-modified RNA from HEK293T cells transfected with
the NHG plasmid (10 pg) was splitinto three reactions for the first step
of RNase H-based rRNA subtraction. The steps for RNase Hand DNase
treatment mentioned in ‘RT-PCR with DMS-modified RNA from cells
or invitro transcription’ were followed. After DNase treatment, the 3
reactions were elutedin 8.5 plwater and combined. Anadditional rRNA
subtraction step was performed using the RiboZero Human/Mouse/Rat
rRNA removal kit (Illumina; discontinued) according to the manufac-
turer’s specifications. After RiboZero, the RNA was purified with RNA
Cleanand Concentrator -5, following the manufacturer’sinstructions
for recovery of fragments >200 nt and eluted in 10 pl water. The RNA
was fragmented using the RNA Fragmentation kit (ThermoFisher Sci-
entific) withafragmentation step of 45sat 70 °C. The RNA was purified
with RNA Clean and Concentrator -5, following the manufacturer’s
instructions for recovery of all fragments and eluted in 6.5 pl water.
Then, 1pl CutSmartbuffer (New England Biolabs), 1.5 pl shrimp alkaline
phosphatase (New England Biolabs) and 1 .l RNaseOUT (ThermoFisher
Scientific) wereadded and incubated at 37 °C for 1h to dephosphoryl-
ate the RNA. Subsequently, 6 il 50% PEG-800 (New England Biolabs),
2.2 1l 10x T4 RNA ligase buffer (New England Biolabs), 2 il T4 RNA
ligase, truncated KQ (England Biolabs) and 1 pl linker were added to
thereactionandincubated for 18 hat22 °C. The RNA was purified with
RNA Clean and Concentrator -5, following the manufacturer’sinstruc-
tions for recovery of all fragments and eluted in 15 pl water. Excess

linker was degraded by adding 2 pul 10x Rec) buffer (Lucigen), 1l Rec)
exonuclease (Lucigen),1pul5’ deadenylase (New England Biolabs) and
1l RNaseOUT, thenincubating for 1 h at 30 °C. The RNA was purified
with RNA Clean and Concentrator -5, following the manufacturer’s
instructions for recovery of fragments >200 ntand eluted in 11 pl water.
For reverse transcription, 1 pl reverse-transcription primer, 1 pul 0.1IM
DTT, 4 pl 5x first strand buffer, 1l ANTP, 1 pl RNaseOUT and 1 pl T-GIRT
Il were added and the sample was incubated for 2 h at 65 °C. RNA was
degraded by adding 1 ul 4 N NaOH and incubating at 95 °C for 3 min.
Thereverse-transcription product was mixed with an equal volume 2x
Novex TBE-urea sample buffer (ThermoFisher Scientific) and run on
a10% TBE-urea gel (ThermoFisher Scientific) and the approximately
300-400-nt product was extracted. The purified single-strand DNA
was circularized using the CircLigase ssDNA ligase kit (Lucigen). Then,
2 pl of the circularized product was used for PCR using Phusion. The
sample was run for amaximum of 14 cycles. Following PCR, the product
was run on an 8% TBE gel and the approximately 350-450-nt product
was gel-extracted. The final PCR product was quantified by Bioanalyzer
(Agilent). The product was then sequenced by Novaseq S4 (Illumina)
to produce 150x150-nt paired-end reads. The same library generation
protocol was followed for in vitro-transcribed and DMS-modified U4
and U6 core-domain with some modifications. The startingamount was
250 ng of RNA as part of apool of RNA totalling 4 pg. No fragmentation
and no rRNA removal were performed.

HIV-1splice junction use analysis

Splice analysis was performed according to a previously written pro-
tocol*. Inbrief, two separate RT-PCR reactions were performed with 2
pgtotalunmodified RNA from HEK293T cells transfected with plasmid
containing HIV-1y,c, Aupr HIV-1,,c or HIV-1 mutants. One reaction was
designed toreverse-transcribe all HIV-1 multiply spliced products with
areverse primer that spans the D4A7 splice junction. The second reac-
tion is designed to reverse-transcribe HIV-1singly spliced mRNA with
areverse primer that lies in the envintron. The forward primer used
inboth PCR reactions is located upstream of D1. Reverse transcrip-
tion was performed with SuperScript Ill (Thermo Fisher Scientific) at
55°Cfor1hfollowed by 15 minat 70 °C. RNA was degraded by adding
1plRNase H and incubating at 37 °C for 20 min. The cDNAs were then
purified with Agencourt RNACleanX beads at a ratio of 2:1 (Beckman
Coulter). Two successive rounds of PCR were used to add adapters for
sequencing using the KAPA robust PCR kit (KAPA Biosystems). The first
PCRuseswithaforward primer thatislocatedinthe shared upstream D1
sequence thatalso has an adaptor. The second round adds the universal
adaptor and lllumina- ndexed sequencing primers. The PCR products
were then sequenced by lllumina Miseq, 300x 300-nt paired-end reads.

Statistical methods

Statistical analysis of DREEM clusters was quantified by Pearson’s cor-
relation. R? and Pvalues of Pearson’s correlation are reported.

Library linker and primers

All oligonucleotides were ordered from IDT. The stem A and stem C
T7 forward primer: TAATACGACTCACTATAGAAAGGATCGG; stem A
and stem C T7 reverse primer: ATCCCAGCGCGTGGTGCA; stem A and
stem Creverse transcription primer: ATCCCAGCGCGTGGTGCA; stem
A and stem C PCR forward primer: GAAAGGATCGGAAGACTCCACAG;
stem A and stem C PCR reverse primer: ATCCCAGCGCGTGGTGCA;
addriboswitch T7 forward primer: TTCTAATACGACTCACTATAGGAC
ACGACTCGAGTAGAGTCG; add riboswitch forward primer: GAC
ACGACTCGAGTAGAGTCG; add riboswitch reverse primer: TGTTGGA
GTCTACTCGACTCCGGT; HIV-1RRE T7 forward primer: TAATACGAC
TCACTATAGGAGCTTTGTTCC; HIV-1RRE T7 reverse primer: GGAGCTGT
TGATCCTTTAGGTATCTTTC; HIV-1 RRE RT primer: GGAGCTGT
TGATCCTTTAGGTATCTTTC; HIV-1 RRE PCR forward primer: GGAG
CTTTGTTCCTTGGGTTCTTGG; HIV-1RRE PCR reverse primer: GGA



GCTGTTGATCCTTTAGGTATCTTTC; HIV-1 A3 PCR forward primer:
TGAAACTTACGGGGATACTTGGGCAGGA; HIV-1,, ;A3 PCRand reverse
transcription reverse primer: GAAGCTTGATGAGTCTGACTGTTCTGA
TGAGC; HIV-1,,,c A3 PCR and reverse transcription reverse primer:
CTTCGTCGCTGTCTCCGCTTCTTCC.

Togenerate AuprHIV-1y,,6, we used: HIV-1y, , ; ageF: AGCTAGAACTGG
CAGAAAACAGGGAGATTC; NL SalIR: CCATTTCTTGCTCTCCTCTGT
CGAGTAACGC; AuprS: GGAAACTGACAGAGGACAGATGGAATAAGCCCC
AGAAGACC;and AuprAS:GGTCTTCTGGGGCTTATTCCATCTGTCCTCTGT
CAGTTTCC.

To generate A3 splice site mutants, we used: NL 5599F: CATACAA
TGAATGGACACTAGAGCTTTTAG; NL BamHIR: GTCCCAGATAAGTG
CCAAGGATCCGTT; A3SLmut1S: TCCATTTCAGAATTGGGTGTCGAGTA
AGCCTAATAGGCGTTACTCGACAGAGGA; A3SL mut1AS: TCCTCTGTCG
AGTAACGCCTATTAGGCTTACTCGACACCCAATTCTGAAATGGA; A3SL
mut 2 S: GAATTGGGTGTCGACAACGCCTAATAGGCGTTACTCG
AC; A3SL mut 2 AS: GTCGAGTAACGCCTATTAGGCGTTGTCGACACC
CAATTC; A3SL mut3 S: GGTGTCGACATAGCAGAATCTGCTATACTCGA
CAGAGGAGAGCAA; A3SL mut3 AS: GGTGTCGACATAGCAGAATCTGC
TATACTCGACAGAGGAGAGCAA;A3SLmut4S: TCAGAATTGGGTGTCGAA
ACAGCGAAATAGGCGTTACTCGACAGA; A3SL mut 4 AS: TCTGTCGAG
TAACGCCTATTTCGCTGTTTCGACACCCAATTCTGA; A3SLmut5S: TCA
GAATTGGGTGTCGAAACAGCGAAATTCGCGTGTTTCGACAGAGGAGAG
CAA;A3SLmut5AS: TTGCTCTCCTCTGTCGAAACACGCGAATTTCGCTGT
TTCGACACCCAATTCTGA.

The library generation linker was: /5SrApp/TCNNNNNNNNNNN
NAGATCGGAAGAGCGTCGTGTAGGGAAAGA/3ddC/. The library
generation reverse-transcription primer was: /5Phos/AGATCGGA
AGAGCACACGTCTGAACTCCAG/iSp18/TCTTTCCCTACACGACGCTC
TTCCGATCT. Thelibrary generation forward PCR primer was: CAAGC
AGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGC
TC (in which X denotes any base). The library generation reverse PCR
primer was: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA
CGACGCTC.

For splice analysis, the following primers were used. Multiply spliced
reverse primer: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNN
NNNNNNNNNNNCAGTTCGGGATTGGGAGGTGGGTTGC; singly spliced
reverse primer: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT NN
NNNNNNNNNNNNGTACTATAGGTTGCATTACATGTACTACTTAC; PCR
round 1 forward primer: GCCTCCCTCGCGCCATCAGAGATGTGT
ATAAGAGACAGNNNNTGCTGAAGCGCGCACGGCAAG; PCRround 2
reverse primer: CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGG
AGTTCAGACGTGTGCTC; and round 2 forward primer: AATGATACGG
CGACCACCGAGATCTACACGCCTCCCTCGCGCCATCAGAGATGTG.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig.1|See next page for caption.



Extended DataFig.1|DREEM clustering pipeline for DMS-MaPseq data.
a,Aread x”isrepresented asaseries of Dbits,inwhich Disthelength ofthe
read. Abaseisdenoted by thebit1ifitis mutated away from thereference, and
by O otherwise. Kis the number of clustersin the sample. p, = {tisy, tyi, ---, Hip} IS
the mutation profile of cluster k, and m is the mixing proportion of cluster k
suchthat Z',le m,=1fork=1toK.Themodel parameters pand mare randomly
initialized. Inthe expectation step, reads are assigned probabilistically to
clustersand the likelihood of observing the data given the model parametersis
computed. Inthe maximizationstep, the mixing proportionis calculated from
theread assignments and the mutation profiles are updated for each cluster to
maximize the expectation value of the complete case likelihood. The

expectation steps alternate with the maximization steps until the likelihood
converges. Thelikelihood functionis derived using Bernoulli mixture models
modified toaccount for missing datain the formof the underrepresentation of
reads withadjacent mutations. b, Mutational distance distribution between
basesindenatured DMS-modified total RNA. The mutation distance versus
frequencyisplotted, between two DMS-reactive positions (thatis,Aor CtoAor
C;shownas yellowbars) and between one DMS-reactive positionand a
background mutation (for example, mutation owing to sequencingerror) (that
is,Aor CtoTor G;shownasbluebars). The bluebarsdemonstrate the
frequency of observing two mutations due to background.
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which excludes the primers used for RT-PCR (that have no DMS-induced
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Extended DataFig. 9 | Quality control for the generation of the
genome-wide HIV-1,library. a, Coverage of HIV-1genome with
DMS-MaPseq data from HEK293T cells transfected with HIV-1,,c. b, Moving
average of Aand C mutation frequency in100-nt windows after DMS-MaPseq,
compared to the moving average T and G mutation frequency. ¢, DMS-MaPseq
datafrom HEK293T cells transfected with HIV-1,,; were used as input for
DREEM. Local 80-nt window from Fig. 4 for the RRE region was used for
clustering. Percentages of clusters1and 2come from n=1experiment.
Nucleotides are colour-coded on the basis of the normalized DMS signal; bases
outside of the window used for clustering are colouredingrey.d, The A3 splice
site was analysed using DMS-MaPseq and DREEM clustering from genome-wide

datafrom HEK293T cells transfected with HIV-1,,c. Percentages of clusters 1
and 2 come from n=1experiment, as determined by DREEM. Nucleotides are
colour-coded on the basis of the normalized DMS signal. e, A region of the HIV-1
genomeinthe polcoding region (nucleotides 2,000-2,120, based on HIV-1,
genomic RNA coordinates) was analysed using DMS-MaPseq and DREEM
clustering from genome-wide data from HEK293T cells transfected with
HIV-1y,c. TWo clusters passed the BIC test inadjacent 80-nt windows that
overlapped by 40 nt. The two 80-nt windows were combined to make the
structural models. Therange of proportions of each cluster come from the
individualwindows of n=1experiment. Nucleotides were colour-coded on the
basis of the normalized DMS signal.
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Extended DataFig.10|Proportion of minor clustersacross the HIV-1
genome and the U1, U4 and U6 core-domain structural models. a, Each bar
shows the proportion of aminor cluster of an 80-nt window as a function of

genome position for regionsin the HIV-1,,c genome dataset that are covered by

atleast100,000 reads and pass 2 clusters, according to the BIC test. b, U1
structural prediction from HEK293T cells transfected with HIV-1y,,c. The

abundance of the cluster was obtained from DREEM clustering. ¢, In vitro
DMS-modified U4 and U6 core-domain RNA. The structureis shown for a

population average; cluster 2did not pass the BIC test. d, Left, difference in BIC
testvaluebetween K=2and K=1, normalized to the value for K=2for the real
whole-genome dataset. Eachbar represents an 80-nt window across the HIV-1
genome. Orange, windows in which only one cluster was detected according to
the BIC test; blue, clusters for which two clusters passed the BIC test. Right, the
same plot as shownin the left panel from simulated data, for which the
mutations were randomly distributed but had the same average number of
mutations perread asthetrue data.
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Extended DataFig.11|Shannon entropy across the HIV-1genome, and A4
and A5 splicesites. a, Overlay of the HIV-1,,; genomic organization on top of a
Shannon entropy plot. Each dot represents an 80-nt window, in which Shannon
entropy was calculated from DMSreactivity. The top plot is the major cluster
and thebottomis the minor cluster. b, Scatter plot of Giniindex versus
Shannon entropy for the major and minor clusters (n=1). R?is Pearson’s R%.

¢, Structural model of the transcription-activation-region stemloop from the
genome-wide DMS-MaPseq and DREEM data. d, Structural model from two
clusters found using the genome-wide DMS-MaPseq and DREEM datafor a
window containing four splice acceptor sites (A4a, A4b, A4cand AS5). Splice
sitesare boxed. Nucleotides are colour-coded on the basis of the normalized
DMSsignal.



natureresearch

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main
text, or Methods section).

Confirmed

>
~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

M XXX X [ OX X
O 0o d X XOX OKX

Clearly defined error bars
State explicitly what error bars represent (e.g. SD, SE, Cl)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection No collection software used

Data analysis Sequence alignment: Bowtie2 2.3.4.1. For code development: python v. 3.6.7. For read trimming: TrimGalore 0.4.1. For read quality
assessment: FastQC v0.11.8. For RNA secondary structure analysis: RNAstructure v6.0.1. For calculating post-mapping statistics: Picard
2.18.7. RNA secondary structure visualization: VARNA v3.93. HIV-1 splicing analysis: https://github.com/SwanstromlLab/SPLICING. Splice
plot creation: R version 3.5.1. For figure construction: Adobe Illustrator CC 2019. For data analysis: Microsoft Excel 2018. Plot generation:
Plotly v3.2.1. DREEM clustering algorithm is available at https://codeocean.com/capsule/0380995/tree Sfold 2.2 http://
sfold.wadsworth.org/cgi-bin/index.pl

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

=
Q
—
C
=
()
=
(D
W
Q)
Q
=
(@)
o
=
)
o
[}
=
2
Q
(2]
c
3
3
Q
=
S




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data available through GEO accession code GSE 131506.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

o]
Q
—
C
=
()
=
(D
W
Q)
Q
=
(@)
o
=
D
o
[}
=
2
Q
(2]
c
3
3
Q
=
S

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For clustering analysis, we used a minimum sequencing depth of 100,000 reads per base.

Data exclusions  DMS-modified samples that did not have sufficient signal (mutational fraction <0.05 A/C for population average) were excluded from analysis.
Replication Reproducibility of clustering results is shown in figures 1, 2, and 3, as well as extended data figure 4.

Randomization  N/A

Blinding N/A

Reporting for specific materials, systems and methods

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
|:| Unigue biological materials |X| |:| ChlP-seq

|:| Antibodies |X| |:| Flow cytometry

|X| Eukaryotic cell lines |X| |:| MRI-based neuroimaging
|:| Palaeontology
|:| Animals and other organisms

XXX LIX X

|:| Human research participants

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK293t cells obtained from ATCC.
Authentication Cell line was not authenticated.
Mycoplasma contamination Cells tested negative for mycoplasma following manufacturer's specifications for the LookOut kit from Millipore-Sigma.

Commonly misidentified lines  n/a
(See ICLAC register)




	Determination of RNA structural diversity and its role in HIV-1 RNA splicing

	Online content

	Fig. 1 Development and validation of DREEM algorithm for analysis of alternative RNA structures.
	Fig. 2 The formation of alternative structures at HIV-1 RRE is driven by intrinsic RNA thermodynamics.
	Fig. 3 Alternative RNA structures at the A3 splice acceptor site regulate splice site use.
	Fig. 4 Landscape of heterogeneity in HIV-1 RNA.
	Extended Data Fig. 1 DREEM clustering pipeline for DMS-MaPseq data.
	Extended Data Fig. 2 DREEM clustering identifies and quantifies individual structures from in vitro mixing experiments.
	Extended Data Fig. 3 Secondary structure models for the V.
	Extended Data Fig. 4 DREEM clustering reveals an equilibrium of four-stem and five-stem structures for the in vitro-folded HIV-1 RRE.
	Extended Data Fig. 5 The HIV-1 RRE forms two stable alternative structures in CD4+ T cells.
	Extended Data Fig. 6 The A3 splice site forms alternative structures in vitro.
	Extended Data Fig. 7 Splice site use in additional A3 mutants.
	Extended Data Fig. 8 Structural models of A3SL mut 1 and A3SL mut 4.
	Extended Data Fig. 9 Quality control for the generation of the genome-wide HIV-1NHG library.
	Extended Data Fig. 10 Proportion of minor clusters across the HIV-1 genome and the U1, U4 and U6 core-domain structural models.
	Extended Data Fig. 11 Shannon entropy across the HIV-1 genome, and A4 and A5 splice sites.




