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Determination of RNA structural diversity 
and its role in HIV-1 RNA splicing

Phillip J. Tomezsko1,2,3,18, Vincent D. A. Corbin4,5,18, Paromita Gupta1,18, Harish Swaminathan1, 
Margalit Glasgow1,6, Sitara Persad1,6, Matthew D. Edwards7, Lachlan Mcintosh4,8,9,  
Anthony T. Papenfuss4,5,8,9,10, Ann Emery11,12,13, Ronald Swanstrom12,13,14, Trinity Zang15,  
Tammy C. T. Lan1, Paul Bieniasz15,16, Daniel R. Kuritzkes3,17, Athe Tsibris3,17 & Silvi Rouskin1 ✉

Human immunodeficiency virus 1 (HIV-1) is a retrovirus with a ten-kilobase 
single-stranded RNA genome. HIV-1 must express all of its gene products from a single 
primary transcript, which undergoes alternative splicing to produce diverse protein 
products that include structural proteins and regulatory factors1,2. Despite the critical 
role of alternative splicing, the mechanisms that drive the choice of splice site are 
poorly understood. Synonymous RNA mutations that lead to severe defects in 
splicing and viral replication indicate the presence of unknown cis-regulatory 
elements3. Here we use dimethyl sulfate mutational profiling with sequencing 
(DMS-MaPseq) to investigate the structure of HIV-1 RNA in cells, and develop an 
algorithm that we name ‘detection of RNA folding ensembles using expectation–
maximization’ (DREEM), which reveals the alternative conformations that are 
assumed by the same RNA sequence. Contrary to previous models that have analysed 
population averages4, our results reveal heterogeneous regions of RNA structure 
across the entire HIV-1 genome. In addition to confirming that in vitro characterized5 
alternative structures for the HIV-1 Rev responsive element also exist in cells, we 
discover alternative conformations at critical splice sites that influence the ratio of 
transcript isoforms. Our simultaneous measurement of splicing and intracellular RNA 
structure provides evidence for the long-standing hypothesis6–8 that heterogeneity in 
RNA conformation regulates splice-site use and viral gene expression.

Previous work4 on the genome-wide RNA structure of HIV-1 in vitro and 
in virion has provided a population-average model, with the underlying 
assumption that every molecule within the population assumes the 
same conformation. However, previous in vitro studies5,9,10 have identi-
fied alternative conformations for the HIV-1 Rev responsive element 
(RRE) and 5′ untranslated region (UTR), which raises the possibility that 
alternative structures have roles in the export of viral RNA from the 
nucleus and packaging in virions. To resolve the fundamental question 
of whether RNA structure affects splicing, it is necessary to distinguish 
multiple conformations for the same sequence in cells. We developed 
the clustering algorithm DREEM, and here we demonstrate that we can 
quantitatively detect alternative RNA structures.

DREEM starts with single-molecule chemical probing data—in 
our case, derived from DMS-MaPseq11. Dimethyl sulfate (DMS) adds 
methyl groups to the unpaired adenines and cytosines of RNA mol-
ecules (Fig. 1). The presence of a methyl adduct is read during reverse 

transcription using TGIRT-III, which marks these sites by incorporat-
ing random mutations in the complementary (c)DNA. PCR amplifies 
the cDNA product and attaches sequencing adapters to the DNA, fol-
lowed by massively parallel sequencing. Each of the resulting reads 
is represented as a binary readout of mutations and matches, which 
is the input for DREEM (Extended Data Fig. 1a). As DMS-MaPseq has 
a negligible background error11, the mutations observed on a single 
DNA molecule correspond to the DMS-accessible bases on the parent 
RNA molecule. The two key challenges for detecting heterogeneity 
are: (1) that DMS modification rates are relatively low (for example, 
an open base has a probability of about 2–10% of being modified); and 
(2) that the rate of DMS modification per open base is sensitive to the 
local chemical environment, such that not all open bases are equally 
reactive to DMS. Traditional approaches to determining RNA structure 
combine chemical probing data into a population-average signal per 
base, which obscures any underlying heterogeneity. By contrast, the 
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DREEM algorithm groups sequencing reads issued from each structure 
into distinct clusters, by exploiting information contained in the obser-
vation of multiple modifications on single molecules. Theoretically, if 
two individual bases are DMS-reactive in the population average but 
are never both mutated on a single read, it follows that at least two 
conformations are present. DREEM identifies patterns of DMS-induced 
mutations on reads and clusters in a mathematically rigorous manner 
using an expectation–maximization algorithm (Fig. 1a, Extended Data 
Fig. 1a). The DMS modification rate per base for each cluster (or struc-
ture) is determined by iteratively maximizing a log-likelihood function 
to find and quantify the abundance of alternative structures directly 
from the dataset. The binary nature of the readouts enables the use of 
a multivariate Bernoulli mixture model to compute the log-likelihood 
function12. The DMS modification pattern from each cluster is used to 
create a secondary structure model.

Our control experiments on denatured RNA indicated that TGIRT-III 
is unable to read-through mismatches located within three nucleo-
tides (nt) of each other (Extended Data Fig. 1b). To account for this 
observation, we modified the log-likelihood function of the standard 
multivariate Bernoulli mixture model (Extended Data Fig. 1a). Upon 
convergence of the clustering, the DMS signal from each cluster was 

used as a constraint in the program RNAstructure13. To our knowledge, 
DREEM is unique among algorithms for RNA folding ensembles14 
because DREEM directly clusters the experimental data. Clustering 
before the generation of a secondary structure model enables the dis-
covery of new RNA structures, in contrast to previous work15,16. Purely 
computational algorithms rely on suboptimal folding to create varia-
tion that is not captured by minimum free energy calculations. How-
ever, using experimentally derived constraints is preferable to using 
randomly generated constraints17,18. Moreover, DREEM does not rely on 
thermodynamics for detecting and identifying alternative conforma-
tions, and therefore can be used on in vivo data to model RNA folding 
in the presence of cellular factors, the energetic contributions to RNA 
structure of which are unknown.

To validate DREEM, we first transcribed two RNA molecules in vitro 
that are nearly identical in sequence but form different structures 
(which we refer to as structure 1 and structure 2). These sequences 
were designed on the basis of a known RNA structure that is changed 
by a single nucleotide variant (riboSNitch) in the human gene MRPS2119. 
We experimentally mixed the RNAs from both structures in varying 
proportions and generated DMS-MaPseq data. DREEM clustered the 
DMS data and successfully identified the two structures, down to a 
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Fig. 1 | Development and validation of DREEM algorithm for analysis of 
alternative RNA structures. a, Schematic of combining DMS-MaPseq data 
with the DREEM algorithm to detect alternative RNA structures. EM, 
expectation–maximization. b, Structural model of in vitro-transcribed and 
folded structure 1 and structure 2, as determined by DMS-MaPseq. Nucleotides 
are colour-coded by normalized DMS signal. c, DMS mutational fraction per 

nucleotide and quantification of structure 1 and structure 2, determined by 
DREEM clustering for a mixing ratio of 25% (structure 1) to 75% (structure 2) 
before DMS modification. d, Proportion of structure 1 and structure 2 
measured by DREEM clustering after in vitro transcription, mixing and 
DMS-MaPseq. The expected (E) and observed (O) ratios are shown from 
n = 1 experiment for each mixing proportion.
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mixing ratio of 6% (Fig. 1b–d, Extended Data Fig. 2). We also tested 
DREEM using the in vitro-transcribed and DMS-modified adenosine 
deaminase (add) riboswitch, which undergoes a conformational shift 
upon binding of adenine20,21. We found that add structures that promote 
translation, which are stabilized by adenine, increased from 18% to 89% 
of the structures detected by DREEM upon addition of 5 mM adenine 
(Extended Data Fig. 3).

We then focused on the RRE of HIV-1NL4-3, a multi-stem structure 
that binds to the viral protein Rev and enables the nuclear export of 
unspliced and partially spliced HIV-1 RNA. Previous studies5 physically 
separated distinct RNA conformations by native gel electrophoresis, 
and revealed two alternative structures for RRE in vitro: a five-stem and 
a four-stem structure. Specific mutations stabilize either of the alter-
native conformations5. DREEM accurately identified the DMS signal 
for mixtures of five-stem structures (referred to here as mut A) and 
four-stem structures (referred to here as mut B), and robustly quantified 
their mixing ratios (Fig. 2a). Notably, we found that the in vitro-folded 
wild-type RRE sequence exists as a mixture of about 27% four-stem and 
about 73% five-stem structures (Extended Data Fig. 4).

We next applied DREEM to the study of HIV-1 RNA structure in pri-
mary cells, which is possible as DMS is cell-membrane permeable22. We 
infected activated CD4+ T cells with HIV-1NL4-3, and performed chemical 
probing in vivo and in virions (Extended Data Fig. 5a). We discovered 
that the RRE sequence forms the same alternative structures regardless 
of the environment (in vitro, in vivo or in virion), favouring the five-stem 
fold (Fig. 2b). These results indicate that the alternative secondary 
structures of RRE are driven largely by intrinsic RNA thermodynamics as 
opposed to particular features of the cellular environment. Moreover, 
these results underscore the ability of DREEM to robustly identify RNA 
folding ensembles from in vivo data (Fig. 2b, c, Extended Data Fig. 5b) 
and to quantify the abundance of the alternate conformations.

We next examined the role of RNA structure in HIV-1 splicing. Alterna-
tive splicing is the major mechanism that is used by HIV-1 to express all 
of its gene products from a single type of pre-mRNA (that is, genomic 

viral RNA). Splice site use must be regulated to produce the correct pro-
portion of HIV-1 transcripts. HIV-1 transcripts spliced at the A3 acceptor 
splice site are the only source of mRNA for the viral transcriptional 
activator Tat1,2.

We discovered alternative structures that dictate the splicing out-
come at the A3 splice site, and therefore regulate the abundance of 
the Tat transcript. First, the structures that form for the HIV-1NL4-3 A3 
splice site in CD4+ T cells differ markedly from previously proposed 
models based on population-average data4. Notably, the two main 
conformations identified by DREEM either occlude (about 40%; clus-
ter 1) or expose (about 60%; cluster 2) the polypyrimidine tract and 
A3 splice site at which the U2AF heterodimer binds (here we abbrevi-
ate the tract and splice site together as A3ss) (Fig. 3a). We termed the 
occluded structure the A3 stem loop (A3SL). The A3SL is not specific to 
the HIV-1NL4-3 and forms in HIV-1NHG in HEK293T cells (cluster 1 in Fig. 3b). 
Notably, we detected strong heterogeneity for the A3ss folded in vitro, 
demonstrating that this region has an intrinsic ability to form multiple 
conformations and that the A3SL is thermodynamically stable in the 
absence of proteins (Extended Data Fig. 6).

To perturb the population of RNA structures and measure the effect 
on splicing, we took advantage of the location of A3ss in the vpr cod-
ing region, which is dispensable for growth in cell culture. We used a 
strain (Δvpr HIV-1NHG) with a pre-mature stop codon in vpr to ensure 
that the observed effects were not due to loss of function of Vpr. To 
test the effect of structure on splicing, we designed mutations dis-
tal from the splice site sequence, avoiding known protein-binding 
regions. The mutants A3SL mut1, mut 2 and mut 3 are predicted to ther-
modynamically stabilize A3SL and decrease splicing at A3ss (Fig. 3c). 
Using a deep-sequencing-based HIV-1 splicing assay23, we found that 
all three stabilizing mutants result in lower rate use of A3ss (Fig. 3d), 
substantially decreasing expression of Tat transcripts relative to a 
background strain.

By contrast, mutations in the same sequence region that are pre-
dicted to have little effect on the stability of A3SL—and therefore little 
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Fig. 2 | The formation of alternative structures at HIV-1 RRE is driven by 
intrinsic RNA thermodynamics. a, HIV-1 RRE structural models derived from 
DMS-MaPseq followed by DREEM using in vitro-transcribed structure-locked 
RRE five-stem (mut A) and four-stem (mut B) mutants. Bar graphs represent 
expected and observed mixing ratios of four-stem and five-stem structures 
from n = 2 experiments. b, Normalized DMS signal for RRE five-stem and 
four-stem structures observed in vitro, in virion and in vivo from CD4+ T cells 
infected with HIV-1NL4-3, identified by DREEM clustering. The positions 

highlighted are examples of bases that change pairing state between the two 
structures, shown in both the DMS signal and the folded RNA structures of the 
four-stem and five-stem structures. Percentages for each cluster are 
determined by DREEM from representative samples of n = 2 (for in vivo and 
in vitro), or from n = 1 for in virion. c, Scatter plots of clustering results for 
n = 2 biological replicates (top two plots) and the variation in DMS signal 
between the different two clusters (four-stem versus five-stem, bottom).
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effect on splicing—increased A3ss use relative to the parental strain 
(A3SL mut 4) (Extended Data Fig. 7a, b). To further test the inhibitory 
role of A3SL, we designed a compensatory mutant to shift the popu-
lation towards the A3SL in the sequence context of the A3SL mut 4. 
Consistent with A3SL inhibiting splicing, the compensatory mutant 
(A3SL mut 5) uses A3ss about 10-fold less frequently than Δvpr HIV-1NHG 
(Extended Data Fig. 7b). The percentage of the A3SL cluster for each 
mutant had an inverse relationship with the overall use of the A3 splice 
acceptor site (Extended Data Fig. 7c). To understand the origin of the 
increase in splicing, we probed A3SL mut 1 and A3SL mut 4 and found 
that these mutations resulted in the formation of an unanticipated 
alternative structure in cluster 2 of both mutants (Extended Data Fig. 8a, 
b). Cluster 2 was present at 35% for A3SL mut 1 and 53% for A3SL mut 4. 
This result demonstrates that thermodynamic predictions alone are 
incomplete. The unanticipated structures alter the accessibility of 
multiple nearby protein-binding sites. These results indicate that the 
intrinsic ability of RNA to form alternative structures can regulate splic-
ing either by directly occluding U2AF binding sites or by modifying the 
accessibility of nearby splicing enhancer and silencer elements; the 
net effect of this regulation results in up to about a 100-fold change in 
abundance of HIV-1 Tat transcripts.

To test whether the formation of alternative structures is a general 
property of HIV-1 RNA, we prepared a genome-wide DMS-MaPseq 
dataset from HEK293T cells transfected with HIV-1NHG (Extended Data 
Fig. 9a). We used DREEM clustering on overlapping windows spanning 
the entire genome and applied a stringent Bayesian information criteria 
(BIC) test to determine whether the data could be separated into two 
distinct structure signals24. Notably, both the RRE and A3ss match the 
results obtained by specific PCR with reverse transcription (RT–PCR) 
(Extended Data Fig. 9b, c).

More than 90% of windows with coverage of >100,000 sequenc-
ing reads passed the BIC test for 2 clusters, indicating the presence 
of heterogeneity in RNA structure across the entire HIV-1 genome. 
We quantified the variability in reactivity of residues in each window 
using the Gini index metric, which is used to estimate the stability of 
the RNA structure25. A Gini index close to zero indicates a relatively even 
distribution of DMS modifications, and occurs when RNA is unfolded 
or when RNA structure is highly heterogeneous. A Gini index close to 

one occurs when a subset of residues is strongly protected from DMS, 
and indicates a highly stable structure. We also computed a Pearson’s 
correlation coefficient for all windows that had alternative structures 
to measure how different the two structures were from each other. The 
low Pearson correlation (R2 < 0.3) and low Gini index (<0.5) indicate that 
that relatively unstable, alternative structures form across the entire 
genome (Fig. 4a)—including alternative conformations for a conserved 
structure26 in the 4-kilobase (kb) gag-pro-pol region (Extended Data 
Fig. 9d), which is present exclusively in unspliced transcripts. The small-
est minor cluster that we observed was present at 20% and was located 
in the env coding region (Extended Data Fig. 10a).

The widespread alternative structure of the HIV-1 genome stood 
in contrast to the small nuclear RNA U1 probed in vivo and U4 and U6 
core-domain RNA probed in vitro, both of which exhibited minimal 
heterogeneity (Extended Data Fig. 10b, c). These RNAs have stable struc-
tures, as previously determined by X-ray crystallography27 and nuclear 
magnetic resonance28, respectively. As a control against over-clustering, 
we simulated reads on the basis of the HIV-1 population-average 
DMS signal with no relationship between mutations, and observed 
no regions that passed the BIC test for two clusters (Extended Data 
Fig. 10d). As expected, we observed an inverse relationship between 
the Gini index and Shannon entropy, an alternative measure of RNA 
structure (Extended Data Fig. 11a, b). We used the whole-genome data 
to identify previously validated structures such as the transcription 
activation region, which was detected in one conformation (Extended 
Data Fig. 11c). We found structure heterogeneity at most splice sites, 
including A4a, A4b, A4c and A5 (Extended Data Fig. 11d). Together, these 
results suggest splice-site occlusion as a general mechanism through 
which HIV-1 tunes alternative splicing.

In summary, our results indicate that the thermodynamic ability of 
RNA to form alternative conformations at critical splice sites enables 
HIV-1 to express different genes from the same primary transcript. This 
may be necessary from an evolutionary perspective for HIV-1 to set 
an upper limit for splice-site use independent of splice enhancer and 
suppressor recognition. Splicing repression by RNA structure could 
ensure that a fraction of molecules remain unspliced, which is essential 
for packaging and transmitting the full-length HIV-1 genome. Finally, 
DREEM clustering permits the study of alternative RNA structures at 
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single-nucleotide resolution in living cells. The DREEM approach has 
wide range of potential applications, including elucidating the role of 
RNA structure in human alternative splicing—where changes of splice 
site use of as little as twofold are associated with multiple diseases29,30.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment.

DREEM clustering description
Definitions of symbols: N, total number of reads; D, length of region 
of interest in the reference; X = {x1, …, xN}, set of all observed reads; S, 
set of all allowed (observable) reads; K, number of clusters; πk, mixing 
proportion of cluster k. π = {π1, …, πK} such that π∑ = 1k

K
k=1 . μ = {μ1, …, 

μk} in which μk = (μk1, …, μki, …, μkD) ∀ i = 1, …, D is the mutation profile 
of cluster k and in which μki is the mutation rate of base i in cluster k. 
ynk, the latent Boolean variable representing the assignment of read n 
to cluster k. znk, the expectation of ynk, or the probability that read n 
belongs to cluster k. i, α, nucleotide index.

The sequencing data from a sample were mapped to the correspond-
ing reference genome using the Bowtie2 aligner31. The data observed 
X consists of N reads {x1, …, xN}, each containing D nucleotides. Each 
read xn ∈ X represents a distinct RNA molecule that was DMS-modified, 
reverse-transcribed and amplified. The DMS modifications are read 
out as mutations. A read xn can then be represented as a vector of D 
bits (xn1, …, xnD) or a ‘bit vector’ in which xni = 1 if base xni is mutated, or 
0 otherwise.

As DMS modification is far from saturating (that is, not every acces-
sible base of a single molecule is modified), each open base in an RNA 
molecule has only a small probability (2–10%, depending on the DMS 
concentrations used) of being modified. External factors unrelated to 
the secondary structure (such as 3D conformation or local chemical 
environment) will affect this probability. As a consequence of this, a 
distinct mutation probability μ will be associated with each base of 
the read. We assume the mutation probabilities are independent from 
each other. This assumption allows us to consider each read as a ran-
dom draw from a Bernoulli mixture model. In the event that the RNA 
molecules assume more than one structure, each structure will appear 
in the data as a collection of reads (that is, a cluster), characterized by 
its own Bernoulli mixture model.

If K is the number of structures present in our sample, then the model 
is parameterized by: the mutation probabilities μ = {μ1, …, μK}, in which 
μk = (μk1, …, μkD) are the mutation probabilities of cluster k, and the mix-
ing proportions π = {π1, …, πK} of the K clusters, in which πk quantifies 
the proportion of reads that belong to cluster k.

The expectation–maximization algorithm used by DREEM for clus-
tering assumes a Bernoulli mixture model12. Therefore, the probability 
(Pr) of a base not being mutated in cluster k is: Pr(xni = 0|μk) = 1 − μki, and 
the probability of a base being mutated in cluster k is: Pr(xni = 1|μk) = μki. 
Therefore, the Bernoulli mixture model gives us the probability of 
observing a read xn from cluster k as:

x μ μ μPr( | ) = ∏ (1 − ) (1)n k
i

D

ki
x

ki
x

=1

1−ni ni

We observed that in DMS-MaPseq data, reads that contain muta-
tions within three bases of each other are very rare, and occur at a fre-
quency close to the sequencing error rate (Extended Data Fig. 2); that 
is, the bit vectors 001001000, 001010000 and 001100000 are greatly 
underrepresented. This is probably due to the reverse transcriptase 
falling off the template when encountering adjacent methylations. 
Truncated reads do not get amplified during PCR, and therefore are 
not represented when sequenced. To account for this bias, we remove 
all rare reads containing mutations within three bases of each other 
and we compute S, the set of all reads with allowable mutations in 
{0,1}D that can be sequenced. Therefore, equation (1) is modified as  
follows:

μ μ

μ μ
Pr( | ) =

∏ ( ) (1 − )

∑ ∏ ( ) (1 − )
.n k

i
D

ki
x

ki
x

x S i
D

ki
x

ki
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=1
1−

′∈ =1
′ 1− ′

ni ni

ii
x μ

In the initial step of the expectation–maximization algorithm, the 
model parameters μ and π are randomly initialized. After the initiali-
zation of the parameters, the expectation step and the maximization 
step are executed one after the other in a loop until the log likelihood 
converges.

Two calculations are made in the expectation step: first, the respon-
sibilities of the cluster are computed—that is, the reads are assigned 
probabilistically to clusters:

z =
Pr( | )π

∑ Pr( | )π
.nk

n k k

j
K

n j j=1

x μ

x μ

Here znk is the probability that read n belongs to cluster k. It can also 
be defined as the posterior probability, or responsibility, of cluster 
k given read n. Second, the expected complete-data log-likelihood 
of observing the data X and latent variables Y = {Ynk} given the model 
parameters is computed:

E μ π x μX Y x z πln Pr( , | , ) = ∑ ∑ ln{ Pr( | )}Y Z
n

N

k

K

nk k n k
=1 =1

∼

In the maximization step, the model parameters are re-estimated 
by maximizing the expected value of the likelihood with respect to 
the parameters {πk} and {μki}. The mixing proportion of each cluster is 
then updated, using:

z
N

π =
∑

k
n
N

nk=1

The mutation profile μk of each cluster is then updated by solving 
the following system of equations for each k:

μ μ
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These equations are derived by setting the derivatives of the expected 
complete-data log-likelihood function to zero.

After the expectation–maximization clustering algorithm has fin-
ished running, the reactivity of the bases in each cluster is given as 
input to RNAstructure13 for secondary structure prediction. The DMS 
signal is normalized such that the median of the top ten most-reactive 
positions is set to 1.0. To protect from spurious outliers, we use 90% 
winsorization, effectively capping the reactivity at 1.0. Final visualiza-
tions of RNA secondary structure were created with VARNA32.

The parameters used by the DREEM pipeline were as follows: the 
minimum number of iterations of the expectation–maximization 
algorithm to run before checking for convergence of the likelihood 
(num_its), 300; the number of expectation–maximization algorithm 
runs (num_runs), 10. num_runs independent runs of the expectation–
maximization algorithm are carried out to ensure that the results from 
the algorithm are robust to the initialization of the model parameters 
and are repeatable.

The convergence threshold (conv_thresh) is 1. The expectation–
maximization algorithm is stopped when log(likelihood)iteration = n + 1 
− log(likelihood)iteration = n < conv_thresh after num_its iterations have 
been completed.

The signal threshold (sig_thresh) is 0.005. Only mutation rates greater 
than sig_thresh are considered. All bases with a population-average 
mutation rate less than sig_thresh are set to 0 in every bit vector.

We used BIC = log(N) × D × K − 2log(likelihood). To test for over fitting 
the data, we checked whether the expectation–maximization algorithm 



passes two clusters by using the BIC test. If BICK = 2 > BICK = 1, the algorithm 
stops. Otherwise, the algorithm moves on to K = 3.

Bit vectors are filtered out if they do not satisfy one of the follow-
ing four criteria: informative bits threshold (info_thresh) of 0.05–0.2. 
We set xni to ‘.’ if base i is not covered by read xn and to ‘?’ if it is of low 
quality (defined as having a Phred quality score of less than 20). If the 
fraction of non-informative bits (‘.’, ‘?’ and N) in the bit vector is greater 
than info_thresh, the bit vector is removed. After this filtering, all the 
non-informative bits are set to 0 in the remaining bit vectors. We set a 
maximum number of mutations such that if the number of mutations in 
the bit vector is greater than three times the standard deviation of the 
mutation distribution per read, the bit vector is removed. Invalid bit vec-
tors represent rare occurrences of bit vectors with adjacent mutations 
(within 3 nt) are considered to be part of background noise (Extended 
Data Fig. 2) and are filtered out. There are also rare instances in which 
a bit vector consisted of a mutation (1) right next to a non-informative 
base such as ‘.’ or ‘?’. These reads were also filtered out. Because DMS 
modifies only A and C, these constitute informative bases: mutations 
at T and G are set to 0.

Cell lines
HEK293T cells were obtained from ATCC. The cells tested nega-
tive for mycoplasma by LookOut Mycoplasma PCR Detection kit 
(Millipore-Sigma). The cells were maintained in Dulbecco’s Modified 
Eagle Medium (ThermoFisher Scientific) supplemented with 10% 
heat-inactivated fetal bovine serum (ThermoFisher Scientific) and 
100 U/ml penicillin–streptomycin (ThermoFisher Scientific).

Plasmid construction
HIV-1NL4-3 infectious molecular clone (pNL4-3) was obtained from the 
NIH AIDS reagent programme33. HIV-1NHG is a full-length HIV-1 proviral 
plasmid, modified to replace a non-essential gene (nef) with GFP (Gen-
Bank accession code: JQ585717.1). A Vpr-truncated derivative (Δvpr 
HIV-1NHG) was constructed by generating an overlapping PCR with a 
C-to-T mutation, and thus a stop codon after Vpr amino acid 20. This 
PCR product inserted into HIV-1NHG using AgeI and SalI. All of the A3 
splice site mutants were generated via overlapping PCR and inserted 
into a Δvpr HIV-1NHG.

CD4+ T cell isolation
Apheresis leukoreduction collars, obtained from the Brigham and 
Women’s Hospital Crimson Core, were used to isolate peripheral blood 
mononuclear cells by lymphocyte separation medium (ThermoFisher 
Scientific) density centrifugation. CD4+ T cells were isolated by nega-
tive selection using EasySep Human CD4+ T cell Enrichment Kit (Stem-
Cell Technologies). CD4+ T lymphocytes were cultured at a density of 
approximately 1 million cells per millilitre in RPMI-1640 (ThermoFisher 
Scientific) supplemented with 10% fetal bovine serum and 100 U/ml 
penicillin–streptomycin.

DMS modification of in vitro-transcribed RNA
gBlocks were obtained from IDT for the HIV-1 RRE, RRE mut A and 
mut B, control structure 1, control structure 2 and adenoriboswitch. 
HIV-1 RRE and its mutants correspond to nucleotides 7,759–7,990 
based on HIV-1 vector pNL4-3 (GenBank accession code: AF324493.1). 
Adenosine deaminase (add) riboswitch corresponds to nucleotides 
1,590,535–1,590,663 of Vibrio vulnificus strain (GenBank accession 
code: CP037932.1). The U4 and U6 core-domain RNA construct is 
based on the interface of the U4 and U6 snRNA (GenBank accession 
code: 2N7M_X). The gblock also contain 20-nt T7 RNA polymerase 
promoter sequence (TTCTAATACGACTCACTATA) on the 5′ end and a 
23-nt sequence (CCGGAGTCGAGTAGACTCCAACA) on the 3′ end. The 
region of interest was amplified by PCR with a forward primer that 
contained the T7 promoter sequence. The PCR product was used for T7 
Megascript in vitro transcription (ThermoFisher Scientific) according 

to manufacturer’s instructions. Subsequently, 1 μl Turbo DNase I (Ther-
moFisher Scientific) was added to the reaction and incubated at 37 °C 
for 15 min. The RNA was purified using RNA Clean and Concentrator 
-5 kit (Zymo). Between 1 and 2 μg of RNA was denatured at 95 °C for 1 
min. On the basis of the DMS concentration used in the next step, 300 
mM sodium cacodylate buffer (Electron Microscopy Sciences) with 
6 mM MgCl2+ was added so that the final volume was 100 μl. The RNA 
was refolded by incubating for 20 min at 37 °C. Then, 0.25–2.5% DMS 
(Millipore-Sigma) was added and incubated at 37 °C for 5 min while 
shaking at 500 r.p.m. on a thermomixer. The DMS was neutralized by 
adding 60 μl β-mercaptoethanol (Millipore-Sigma). The RNA was puri-
fied using RNA Clean and Concentrator -5 kit. For in vitro transcription 
of add riboswitch samples, one set of samples were incubated with 5 
mM adenine during the refolding stage at 37 °C.

CD4+ T cell infection and DMS modification
Fifteen million CD4+ T cells were activated by treatment with culture 
medium containing 10 μg/ml PHA (Millipore-Sigma) and 100 U/ml IL-2 
(ref. 34) (NIH AIDS reagent programme; discontinued) for 72 h. The cells 
were pelleted and infected in a small volume with supernatant from 
HEK293T cells transfected with pNL4-3 for 2 h, then culture medium is 
added to achieve a concentration of about 1 million cells per ml. Subse-
quently, 72 h after infection, the supernatant was filtered with a 0.22-μm 
filter (Millipore-Sigma) and centrifuged at 28,000g for 1 h at 4 °C to pel-
let virions. The cells were washed and resuspended in 15 ml of medium 
and placed on a thermomixer at 37 °C. Then, 200 μl DMS, or about 1.3% 
v/v, (Millipore-Sigma) was added and the cells were incubated for 10 
min while shaking at 800 r.p.m. DMS was neutralized by adding 30 ml 
PBS (ThermoFisher Scientific) with 30% β-mercaptoethanol. The cells 
were centrifuged at 1,000g for 5 min at 4 °C. The cells were washed twice 
by resuspending the pellet with 15 ml PBS with 30% β-mercaptoethanol 
and centrifugation to pellet. After washes, the pellet was resuspended 
in 1 ml Trizol (ThermoFisher Scientific) and RNA was extracted follow-
ing the manufacturer’s specifications. The virions were resuspended 
in 400 μl PBS with 10 mM Tris pH 7 and 3 mM MgCl2+. Next, 40 μl DMS 
was added and the virions were incubated at 37 °C on a thermomixer 
while shaking at 800 r.p.m. for 10 min. The DMS was neutralized with 
400 μl β-mercaptoethanol and the RNA was purified using RNA Clean 
and Concentrator -5 kit. For unmodified RNA, 15 million CD4+ T cells 
were isolated and infected in a small volume with supernatant from 
HEK293T cells transfected with pNL4-3 for2 h, then culture medium is 
added to achieve a concentration of about 1 million cells per ml. Next, 
72 h after infection, the supernatant was filtered with a 0.22-μm filter 
and virions were pelleted from the supernatant by centrifugation at 
28,000g for 1 h at 4 °C and resuspended in 1 ml Trizol. The cells were 
pelleted and resuspended in 1 ml Trizol. RNA was extracted following 
the manufacturer’s instructions.

HEK293T cell transfection and DMS modification
Nine hundred thousand cells per well were seeded on a six-well plate 
and incubated overnight. Next, 2 μg of plasmid DNA (NL4-3, NHG or 
mutant) per well was transfected into the cells using X-tremeGENE 
9 (Millipore-Sigma) following the manufacturer’s instructions, and 
incubated for 48 h. After incubation, virions were collected from the 
supernatant and DMS-modified as in ‘CD4+ T cell Infection and DMS 
modification’. The cells were washed with PBS, and 2 ml medium with 
about 1.3% v/v DMS was added to each well. The plates were incubated 
at 37 °C for 4 min. The medium containing DMS was immediately 
removed and replaced with PBS with 30% β-mercaptoethanol. Cells 
were scraped and centrifuged at 1,000g for 5 min at 4 °C. The pellet 
was resuspended in PBS and centrifuged to pellet twice. The pellet 
was resuspended in 1 ml Trizol and RNA was extracted following the 
manufacturer’s specifications. For unmodified RNA, 900,000 HEK293T 
cells were seeded on a 6-well plate and transfected 2 μg of plasmid 
DNA (NL4-3, NHG or mutant) per well into the cells using X-tremeGENE 
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9 following the manufacturer’s instructions. Then, 48 h after trans-
fection, the supernatant was filtered with a 0.22-μm filter and virions 
were pelleted from the supernatant by centrifugation at 28,000g for 
1 h at 4 °C and resuspended in 1 ml Trizol. The cells were trypsinized, 
washed and resuspended in 1 ml Trizol. RNA was extracted following 
the manufacturer’s instructions.

RT–PCR with DMS-modified RNA from cells or in vitro 
transcription
Between 1 and 3 μg of RNA per reaction was used as the input for rRNA 
subtraction. First, 1 μl rRNA subtraction mix (3 μg/μl) and 2.5 μl 5× 
hybridization buffer (1 M NaCl, 500 mM Tris-HCl pH 7.5) were added 
to each reaction, and final volume was then adjusted with water to 
12.5 μl. The samples were incubated at 68 °C and the temperature was 
reduced by 1 °C/min until the reaction was at 45 °C. Next, 5 μl RNase H 
buffer and 2 μl hybridase thermostable RNase H (Lucigen) were added 
and water was added until the final volume was 40 μl. The samples 
were incubated at 45 °C for 30 min. The RNA was cleaned with RNA 
Clean and Concentrator -5, following the manufacturer’s instructions 
for recovery of fragments >200 nt and eluted in 45 μl water. Then, 5 μl 
Turbo DNase buffer and 1 μl Turbo DNase (ThermoFisher Scientific) 
were added to each reaction and incubated for 30 min at 37 °C. Then, 
5.1 μl DNase inactivation reagent (ThermoFisher Scientific) was added 
and incubated 5 min at room temperature with intermittent manual 
mixing. The RNA was cleaned with RNA Clean and Concentrator -5 fol-
lowing instructions for recovery of fragments >200 nt and eluted in 15 
μl water. For reverse transcription, 1 μl of RNA was added to 3.5 μl water, 
2 μl 5× first strand buffer (ThermoFisher Scientific), 1 μl 10μM reverse 
primer, 1 μl dNTP, 0.5 μl 0.1M DTT, 0.5 μl RNaseOUT and 0.5 μl TGIRT-III 
(Ingex). The reverse-transcription reaction was incubated at 57 °C for 
1.5 h, followed by 5 min at 80 °C. To degrade the RNA, 1 μl RNase H (New 
England Biolabs) was added to the reverse-transcription reaction and 
incubated for 20 min at 37 °C. PCR was performed to amplify the sam-
ples using either Advantage HF 2 DNA polymerase (Takara) or Phusion 
(NEB) for 25–30 cycles according to the manufacturer’s specifications. 
The PCR product was purified by QIAquick PCR purification (Qiagen) 
and sequenced either on MISeq or iSeq100 (Illumina) to produce either 
100-nt single-end reads or 150×150-nt paired-end reads.

Library generation with DMS-modified RNA for HIV-1 genome 
RNA structure
Extracted DMS-modified RNA from HEK293T cells transfected with 
the NHG plasmid (10 μg) was split into three reactions for the first step 
of RNase H-based rRNA subtraction. The steps for RNase H and DNase 
treatment mentioned in ‘RT–PCR with DMS-modified RNA from cells 
or in vitro transcription’ were followed. After DNase treatment, the 3 
reactions were eluted in 8.5 μl water and combined. An additional rRNA 
subtraction step was performed using the RiboZero Human/Mouse/Rat 
rRNA removal kit (Illumina; discontinued) according to the manufac-
turer’s specifications. After RiboZero, the RNA was purified with RNA 
Clean and Concentrator -5, following the manufacturer’s instructions 
for recovery of fragments >200 nt and eluted in 10 μl water. The RNA 
was fragmented using the RNA Fragmentation kit (ThermoFisher Sci-
entific) with a fragmentation step of 45 s at 70 °C. The RNA was purified 
with RNA Clean and Concentrator -5, following the manufacturer’s 
instructions for recovery of all fragments and eluted in 6.5 μl water. 
Then, 1 μl CutSmart buffer (New England Biolabs), 1.5 μl shrimp alkaline 
phosphatase (New England Biolabs) and 1 μl RNaseOUT (ThermoFisher 
Scientific) were added and incubated at 37 °C for 1 h to dephosphoryl-
ate the RNA. Subsequently, 6 μl 50% PEG-800 (New England Biolabs), 
2.2 μl 10× T4 RNA ligase buffer (New England Biolabs), 2 μl T4 RNA 
ligase, truncated KQ (England Biolabs) and 1 μl linker were added to 
the reaction and incubated for 18 h at 22 °C. The RNA was purified with 
RNA Clean and Concentrator -5, following the manufacturer’s instruc-
tions for recovery of all fragments and eluted in 15 μl water. Excess 

linker was degraded by adding 2 μl 10× RecJ buffer (Lucigen), 1 μl RecJ 
exonuclease (Lucigen), 1 μl 5′ deadenylase (New England Biolabs) and 
1 μl RNaseOUT, then incubating for 1 h at 30 °C. The RNA was purified 
with RNA Clean and Concentrator -5, following the manufacturer’s 
instructions for recovery of fragments >200 nt and eluted in 11 μl water. 
For reverse transcription, 1 μl reverse-transcription primer, 1 μl 0.1M 
DTT, 4 μl 5× first strand buffer, 1 μl dNTP, 1 μl RNaseOUT and 1 μl T-GIRT 
III were added and the sample was incubated for 2 h at 65 °C. RNA was 
degraded by adding 1 μl 4 N NaOH and incubating at 95 °C for 3 min. 
The reverse-transcription product was mixed with an equal volume 2× 
Novex TBE-urea sample buffer (ThermoFisher Scientific) and run on 
a 10% TBE-urea gel (ThermoFisher Scientific) and the approximately 
300–400-nt product was extracted. The purified single-strand DNA 
was circularized using the CircLigase ssDNA ligase kit (Lucigen). Then, 
2 μl of the circularized product was used for PCR using Phusion. The 
sample was run for a maximum of 14 cycles. Following PCR, the product 
was run on an 8% TBE gel and the approximately 350–450-nt product 
was gel-extracted. The final PCR product was quantified by Bioanalyzer 
(Agilent). The product was then sequenced by Novaseq S4 (Illumina) 
to produce 150×150-nt paired-end reads. The same library generation 
protocol was followed for in vitro-transcribed and DMS-modified U4 
and U6 core-domain with some modifications. The starting amount was 
250 ng of RNA as part of a pool of RNA totalling 4 μg. No fragmentation 
and no rRNA removal were performed.

HIV-1 splice junction use analysis
Splice analysis was performed according to a previously written pro-
tocol24. In brief, two separate RT–PCR reactions were performed with 2 
μg total unmodified RNA from HEK293T cells transfected with plasmid 
containing HIV-1NHG, Δvpr HIV-1NHG or HIV-1 mutants. One reaction was 
designed to reverse-transcribe all HIV-1 multiply spliced products with 
a reverse primer that spans the D4A7 splice junction. The second reac-
tion is designed to reverse-transcribe HIV-1 singly spliced mRNA with 
a reverse primer that lies in the env intron. The forward primer used 
in both PCR reactions is located upstream of D1. Reverse transcrip-
tion was performed with SuperScript III (Thermo Fisher Scientific) at 
55 °C for 1 h followed by 15 min at 70 °C. RNA was degraded by adding 
1 μl RNase H and incubating at 37 °C for 20 min. The cDNAs were then 
purified with Agencourt RNACleanX beads at a ratio of 2:1 (Beckman 
Coulter). Two successive rounds of PCR were used to add adapters for 
sequencing using the KAPA robust PCR kit (KAPA Biosystems). The first 
PCR uses with a forward primer that is located in the shared upstream D1 
sequence that also has an adaptor. The second round adds the universal 
adaptor and Illumina- ndexed sequencing primers. The PCR products 
were then sequenced by Illumina Miseq, 300× 300-nt paired-end reads.

Statistical methods
Statistical analysis of DREEM clusters was quantified by Pearson’s cor-
relation. R2 and P values of Pearson’s correlation are reported.

Library linker and primers
All oligonucleotides were ordered from IDT. The stem A and stem C 
T7 forward primer: TAATACGACTCACTATAGAAAGGATCGG; stem A 
and stem C T7 reverse primer: ATCCCAGCGCGTGGTGCA; stem A and 
stem C reverse transcription primer: ATCCCAGCGCGTGGTGCA; stem 
A and stem C PCR forward primer: GAAAGGATCGGAAGACTCCACAG; 
stem A and stem C PCR reverse primer: ATCCCAGCGCGTGGTGCA; 
add riboswitch T7 forward primer: TTCTAATACGACTCACTATAGGAC 
ACGACTCGAGTAGAGTCG; add riboswitch forward primer: GAC 
ACGACTCGAGTAGAGTCG; add riboswitch reverse primer: TGTTGGA 
GTCTACTCGACTCCGGT; HIV-1 RRE T7 forward primer: TAATACGAC 
TCACTATAGGAGCTTTGTTCC; HIV-1 RRE T7 reverse primer: GGAGCTGT 
TGATCCTTTAGGTATCTTTC; HIV-1 RRE RT primer: GGAGCTGT 
TGATCCTTTAGGTATCTTTC; HIV-1 RRE PCR forward primer: GGAG 
CTTTGTTCCTTGGGTTCTTGG; HIV-1 RRE PCR reverse primer: GGA 



GCTGTTGATCCTTTAGGTATCTTTC; HIV-1 A3 PCR forward primer: 
TGAAACTTACGGGGATACTTGGGCAGGA; HIV-1NL4-3 A3 PCR and reverse 
transcription reverse primer: GAAGCTTGATGAGTCTGACTGTTCTGA 
TGAGC; HIV-1NHG A3 PCR and reverse transcription reverse primer: 
CTTCGTCGCTGTCTCCGCTTCTTCC.

To generate Δvpr HIV-1NHG, we used: HIV-1NL4-3 ageF: AGCTAGAACTGG 
CAGAAAACAGGGAGATTC; NL SalIR: CCATTTCTTGCTCTCCTCTGT 
CGAGTAACGC; ΔvprS: GGAAACTGACAGAGGACAGATGGAATAAGCCCC 
AGAAGACC; and ΔvprAS: GGTCTTCTGGGGCTTATTCCATCTGTCCTCTGT 
CAGTTTCC.

To generate A3 splice site mutants, we used: NL 5599F: CATACAA 
TGAATGGACACTAGAGCTTTTAG; NL BamHIR: GTCCCAGATAAGTG 
CCAAGGATCCGTT; A3SL mut 1 S: TCCATTTCAGAATTGGGTGTCGAGTA 
AGCCTAATAGGCGTTACTCGACAGAGGA; A3SL mut 1 AS: TCCTCTGTCG 
AGTAACGCCTATTAGGCTTACTCGACACCCAATTCTGAAATGGA; A3SL  
mut 2 S: GAATTGGGTGTCGACAACGCCTAATAGGCGTTACTCG 
AC; A3SL mut 2 AS: GTCGAGTAACGCCTATTAGGCGTTGTCGACACC 
CAATTC; A3SL mut3 S: GGTGTCGACATAGCAGAATCTGCTATACTCGA 
CAGAGGAGAGCAA; A3SL mut 3 AS: GGTGTCGACATAGCAGAATCTGC 
TATACTCGACAGAGGAGAGCAA; A3SL mut 4 S: TCAGAATTGGGTGTCGAA 
ACAGCGAAATAGGCGTTACTCGACAGA; A3SL mut 4 AS: TCTGTCGAG 
TAACGCCTATTTCGCTGTTTCGACACCCAATTCTGA; A3SL mut 5 S: TCA 
GAATTGGGTGTCGAAACAGCGAAATTCGCGTGTTTCGACAGAGGAGAG 
CAA; A3SL mut 5 AS: TTGCTCTCCTCTGTCGAAACACGCGAATTTCGCTGT 
TTCGACACCCAATTCTGA.

The library generation linker was: /5rApp/TCNNNNNNNNNNN
NAGATCGGAAGAGCGTCGTGTAGGGAAAGA/3ddC/. The library 
generation reverse-transcription primer was: /5Phos/AGATCGGA 
AGAGCACACGTCTGAACTCCAG/iSp18/TCTTTCCCTACACGACGCTC 
TTCCGATCT. The library generation forward PCR primer was: CAAGC 
AGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGC 
TC (in which X denotes any base). The library generation reverse PCR 
primer was: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA 
CGACGCTC.

For splice analysis, the following primers were used. Multiply spliced 
reverse primer: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTN NN 
NNNNNNNNNNNCAGTTCGGGATTGGGAGGTGGGTTGC; singly spliced 
reverse primer: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT NN 
NNNNNNNNNNNNGTACTATAGGTTGCATTACATGTACTACTTAC; PCR  
round 1 forward primer: GCCTCCCTCGCGCCATCAGAGATGTGT 
ATAAGAGACAGNNNNTGCTGAAGCGCGCACGGCAAG; PCR round 2 
reverse primer: CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGG 
AGTTCAGACGTGTGCTC; and round 2 forward primer: AATGATACGG 
CGACCACCGAGATCTACACGCCTCCCTCGCGCCATCAGAGATGTG.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Sequencing data can be obtained from the Gene Expression Omnibus 
(GEO) database using accession number GSE131506. All other data are 
available from the corresponding author upon reasonable request.

Code availability
The following programs were used. For sequence alignment, Bow-
tie2 2.3.4.1. For code development, Python v. 3.6.7. For read trimming, 
TrimGalore 0.4.1. For read quality assessment, FastQC v.0.11.8. For 
RNA secondary structure analysis, RNAstructure v.6.0.1. For calculat-
ing post-mapping statistics, Picard 2.18.7. For visualization of RNA 
secondary structure, VARNA v.3.93. For HIV-1 splicing analysis, https://
github.com/SwanstromLab/SPLICING. For generating splice plots, R 
version 3.5.1. For figure construction, Adobe Illustrator CC 2019. For 
data analysis, Microsoft Excel 2018. For plot generation, Plotly v.3.2.1. 
The DREEM clustering algorithm is available at https://codeocean.com/
capsule/0380995/tree.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | DREEM clustering pipeline for DMS-MaPseq data.  
a, A read x″ is represented as a series of D bits, in which D is the length of the 
read. A base is denoted by the bit 1 if it is mutated away from the reference, and 
by 0 otherwise. K is the number of clusters in the sample. μk = {μk1, μki, …, μkD} is 
the mutation profile of cluster k, and πk is the mixing proportion of cluster k 
such that π∑ = 1kk

K
=1  for k = 1 to K. The model parameters μ and π are randomly 

initialized. In the expectation step, reads are assigned probabilistically to 
clusters and the likelihood of observing the data given the model parameters is 
computed. In the maximization step, the mixing proportion is calculated from 
the read assignments and the mutation profiles are updated for each cluster to 
maximize the expectation value of the complete case likelihood. The 

expectation steps alternate with the maximization steps until the likelihood 
converges. The likelihood function is derived using Bernoulli mixture models 
modified to account for missing data in the form of the underrepresentation of 
reads with adjacent mutations. b, Mutational distance distribution between 
bases in denatured DMS-modified total RNA. The mutation distance versus 
frequency is plotted, between two DMS-reactive positions (that is, A or C to A or 
C; shown as yellow bars) and between one DMS-reactive position and a 
background mutation (for example, mutation owing to sequencing error) (that 
is, A or C to T or G; shown as blue bars). The blue bars demonstrate the 
frequency of observing two mutations due to background.
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Extended Data Fig. 2 | DREEM clustering identifies and quantifies 
individual structures from in vitro mixing experiments. Structure 1 and 
structure 2 sequences were in vitro-transcribed and refolded, mixed in 
different proportions and probed with DMS-MaPseq. The region used for 
DREEM clustering covers nucleotides 21–135 (labelled as 1–115 on the figure), 
which excludes the primers used for RT–PCR (that have no DMS-induced 

mutations) and is identical in sequence for the two structures, except for the  
A > C mutation at position 94. Position 94 is masked during analysis. The 
topmost panel shows the DMS reactivity pattern of structure 1 by itself and 
structure 2 by itself. The rest of the panels show the clustering results at 
specified mixing ratios (n = 1).



Extended Data Fig. 3 | Secondary structure models for the V. vulnificus add 
riboswitch. a, Percentages for each cluster detected in the presence or 
absence of 5 mM adenine to the add riboswitch. b, In vitro structure models 
obtained from probing add using DMS-MaPseq followed by DREEM, 

colour-coded by normalized DMS signal. The ApoB and ApoB alternative 
structures represent the off state, which is incompetent for ligand binding. 
ApoA represents the on state. Previously identified helices are boxed and 
labelled.
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Extended Data Fig. 4 | DREEM clustering reveals an equilibrium of 
four-stem and five-stem structures for the in vitro-folded HIV-1 RRE. 
 a, Population-average DMS-MaPseq data for in vitro-transcribed, refolded  
and DMS-treated (or untreated) samples. b, Scatter plots showing the 
reproducibility of the DMS signal from the DREEM clustering results between 

two replicates with different DMS modification conditions. Replicate 1 was 
modified in 0.25% DMS and replicate 2 was modified with 2.5% DMS. R2 is 
Pearson’s R2. c, DREEM clustering data from b were used as constraints to 
generate RNA structure models. The models derived for clusters 1 and 2 from 
replicate 1 are shown, colour-coded by normalized DMS signal.



Extended Data Fig. 5 | The HIV-1 RRE forms two stable alternative 
structures in CD4+ T cells. a, Schematic of DMS treatment in primary cells and 
isolated virions. b, DMS-MaPseq probing of the intracellular HIV-1NL4-3 RRE in 
CD4+ T cells was used as input for DREEM clustering. Two clusters passed the 
BIC test and were used as constraints on the folding using RNAstructure. 

Structural models are colour-coded by normalized DMS reactivity; bases not 
covered by the region of PCR are coloured in grey. Data used to construct 
models are representative data from n = 2 biologically independent 
experiments.



Article

Extended Data Fig. 6 | The A3 splice site forms alternative structures 
in vitro. A 472-nt A3 sequence from the HIV-1NHG strain was in vitro-transcribed, 
refolded and probed with DMS-MaPseq. Models based on DREEM clustering for 

the local structures that form at the A3 site are shown, colour-coded by the 
normalized DMS signal. Percentages of clusters 1 and 2 come from 
n = 1 experiment, as determined by DREEM.



Extended Data Fig. 7 | Splice site use in additional A3 mutants. a, Structure 
models illustrating the mutant design for A3SL mut4 and A3SL mut 5. b, Splice 
site use for A3SL mut 4 and A3SL mut 5 for splice sites A1–A5, reported as fold 
change compared to Δvpr HIV-1NHG. Central bar represents the mean, and error 
bars indicate s.d. n = 4 biologically independent experiments. c, Average 

fraction of transcripts using the A3 site, compared to the percentage of cluster 
1 (A3SL), as determined by DREEM (n = 1) for A3SL mut 1–5. Mutants are 
colour-coded. A dot indicates a multiply spliced (MS) HIV-1 transcript, and a 
triangle indicates a singly splice (SS) HIV-1 transcript.
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Extended Data Fig. 8 | Structural models of A3SL mut 1 and A3SL mut 4.  
a, Structural models for A3SL mut 1 derived from n = 1 experiment, after DREEM 
clustering. Pink box, region of mutations; blue box, splice site. Exonic splicing 
enhancer (ESE) and exonic splicing silencer (ESS) binding sites are shown.  
b, Structural models made using DMS-MaPseq data from HEK293T cells 

transfected with Δvpr HIV-1NHG A3SL mut 4. Dark blue box, sequence of the A3 
splice site; pink box, location of the mutations. Splice enhancer and suppressor 
binding sites are highlighted; purple, ESS2p; blue, ESEtat; orange, ESE2; and 
green, ESS2. Percentages of each cluster come from n = 1 experiment.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Quality control for the generation of the 
genome-wide HIV-1NHG library. a, Coverage of HIV-1 genome with 
DMS-MaPseq data from HEK293T cells transfected with HIV-1NHG. b, Moving 
average of A and C mutation frequency in 100-nt windows after DMS-MaPseq, 
compared to the moving average T and G mutation frequency. c, DMS-MaPseq 
data from HEK293T cells transfected with HIV-1NHG were used as input for 
DREEM. Local 80-nt window from Fig. 4 for the RRE region was used for 
clustering. Percentages of clusters 1 and 2 come from n = 1 experiment. 
Nucleotides are colour-coded on the basis of the normalized DMS signal; bases 
outside of the window used for clustering are coloured in grey. d, The A3 splice 
site was analysed using DMS-MaPseq and DREEM clustering from genome-wide 

data from HEK293T cells transfected with HIV-1NHG. Percentages of clusters 1 
and 2 come from n = 1 experiment, as determined by DREEM. Nucleotides are 
colour-coded on the basis of the normalized DMS signal. e, A region of the HIV-1 
genome in the pol coding region (nucleotides 2,000–2,120, based on HIV-1NHG 
genomic RNA coordinates) was analysed using DMS-MaPseq and DREEM 
clustering from genome-wide data from HEK293T cells transfected with  
HIV-1NHG. Two clusters passed the BIC test in adjacent 80-nt windows that 
overlapped by 40 nt. The two 80-nt windows were combined to make the 
structural models. The range of proportions of each cluster come from the 
individual windows of n = 1 experiment. Nucleotides were colour-coded on the 
basis of the normalized DMS signal.



Extended Data Fig. 10 | Proportion of minor clusters across the HIV-1 
genome and the U1, U4 and U6 core-domain structural models. a, Each bar 
shows the proportion of a minor cluster of an 80-nt window as a function of 
genome position for regions in the HIV-1NHG genome dataset that are covered by 
at least 100,000 reads and pass 2 clusters, according to the BIC test. b, U1 
structural prediction from HEK293T cells transfected with HIV-1NHG. The 
abundance of the cluster was obtained from DREEM clustering. c, In vitro 
DMS-modified U4 and U6 core-domain RNA. The structure is shown for a 

population average; cluster 2 did not pass the BIC test. d, Left, difference in BIC 
test value between K = 2 and K = 1, normalized to the value for K = 2 for the real 
whole-genome dataset. Each bar represents an 80-nt window across the HIV-1 
genome. Orange, windows in which only one cluster was detected according to 
the BIC test; blue, clusters for which two clusters passed the BIC test. Right, the 
same plot as shown in the left panel from simulated data, for which the 
mutations were randomly distributed but had the same average number of 
mutations per read as the true data.
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Extended Data Fig. 11 | Shannon entropy across the HIV-1 genome, and A4 
and A5 splice sites. a, Overlay of the HIV-1NHG genomic organization on top of a 
Shannon entropy plot. Each dot represents an 80-nt window, in which Shannon 
entropy was calculated from DMS reactivity. The top plot is the major cluster 
and the bottom is the minor cluster. b, Scatter plot of Gini index versus 
Shannon entropy for the major and minor clusters (n = 1). R2 is Pearson’s R2.  

c, Structural model of the transcription-activation-region stem loop from the 
genome-wide DMS-MaPseq and DREEM data. d, Structural model from two 
clusters found using the genome-wide DMS-MaPseq and DREEM data for a 
window containing four splice acceptor sites (A4a, A4b, A4c and A5). Splice 
sites are boxed. Nucleotides are colour-coded on the basis of the normalized 
DMS signal.
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