Poster Session: P-G8

Abstract# 499

22nd Conference on Retroviruses and Opportunistic Infections

February 23-26, 2015 Seattle, Washington

Mitochondrial Injury and Cognitive Function in HIV Infection and Methamphetamine Use

¹University of California San Diego, La Jolla, California, USA, and ²Veterans Administration San Diego Healthcare System, San Diego, California, USA

Background

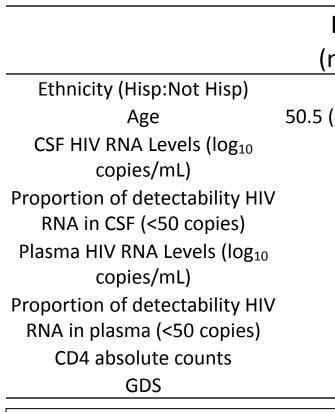
- Mitochondria carry copies of its genome and are critical in providing energy for cellular processes in the central nervous system (CNS).¹
- Accumulation of damaged mitochondrial DNA (mtDNA) is associated with many neurodegenerative diseases.²
- The 4977bp "common deletion" is a significant manifestation of mtDNA damage (**Figure 1**)³.
- HIV infection and methamphetamine (METH) abuse both may cause damage to mtDNA and possibly lead to neurocognitive morbidity.⁴

Objective

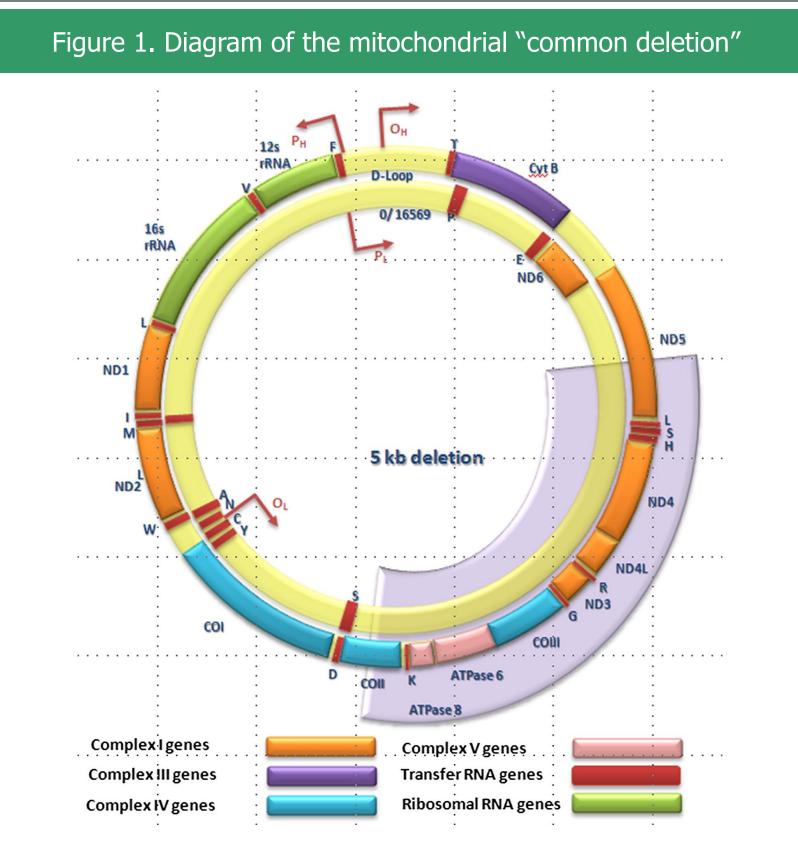
To characterize the relationship between HIV infection, METH use, and mitochondrial injury.

Methods

- We obtained brain tissue from four brain regions from the National NeuroAIDS Tissue Consortium (NNTC): a) frontal lobe, b) frontal BA8, c) middle frontal gyrus, and d) parietal lobe, with associated demographic and neurocognitive data.
- Subjects were divided into 3 groups: a) HIV-infected with evidence of METH use (METH+, n=9), b) HIV-infected with no history of METH use (HIV+, n=11), and c) HIV negative controls (HIV-, n=28). For a subset of individuals, we collected both parietal and frontal lobes.
- We quantified levels of mtDNA and the relative proportion of mtDNA carrying the "common deletion" in brain tissue (white and gray matter) by droplet digital PCR (ddPCR).
- The Global Deficit Score (GDS) was used as a measurement of neurocognitive performance, defining neurocognitive impairment as having a GDS $> 0.5.^{5}$
- Differences between study groups were assessed either by t-test (independent data) or mixed-effects regression analyses (dependent data).
- Associations between continuous variables were assessed by fixed-effects or mixed-effects regression analyses according to independence of the data.
- All statistical analyses were performed in R statistical software.


Acknowledgments

This work was supported by the Department of Veterans Affairs and grants from the National Institutes of Health: PST5TP2_Al093163, Al090970, Al100665, MH097520, DA034978, MH083552, Al036214, Al007384 MH062512, MH081482, AI027763, AI106039, MH101012, MH94159, DA026306; the International AIDS Vaccine Initiative (IAVI); the National Science Foundation DMS0714991; the James B. Pendleton Charitable Trust.


1. Imanian et al. J Eukaryotic Microbiology. 2007 2. Finsterer, J Neurological Sciences, 2009 3. Bentov et al. Fertility and Sterility. 2010

<u>References</u> 4. Semple et al. J Substance Abuse Treatment. 2002 5. Carey et al. J Clinical and Experimental Neuropsychology. 2004 6. Rau et al. J Neuropharmacology. 2011

Table 1.

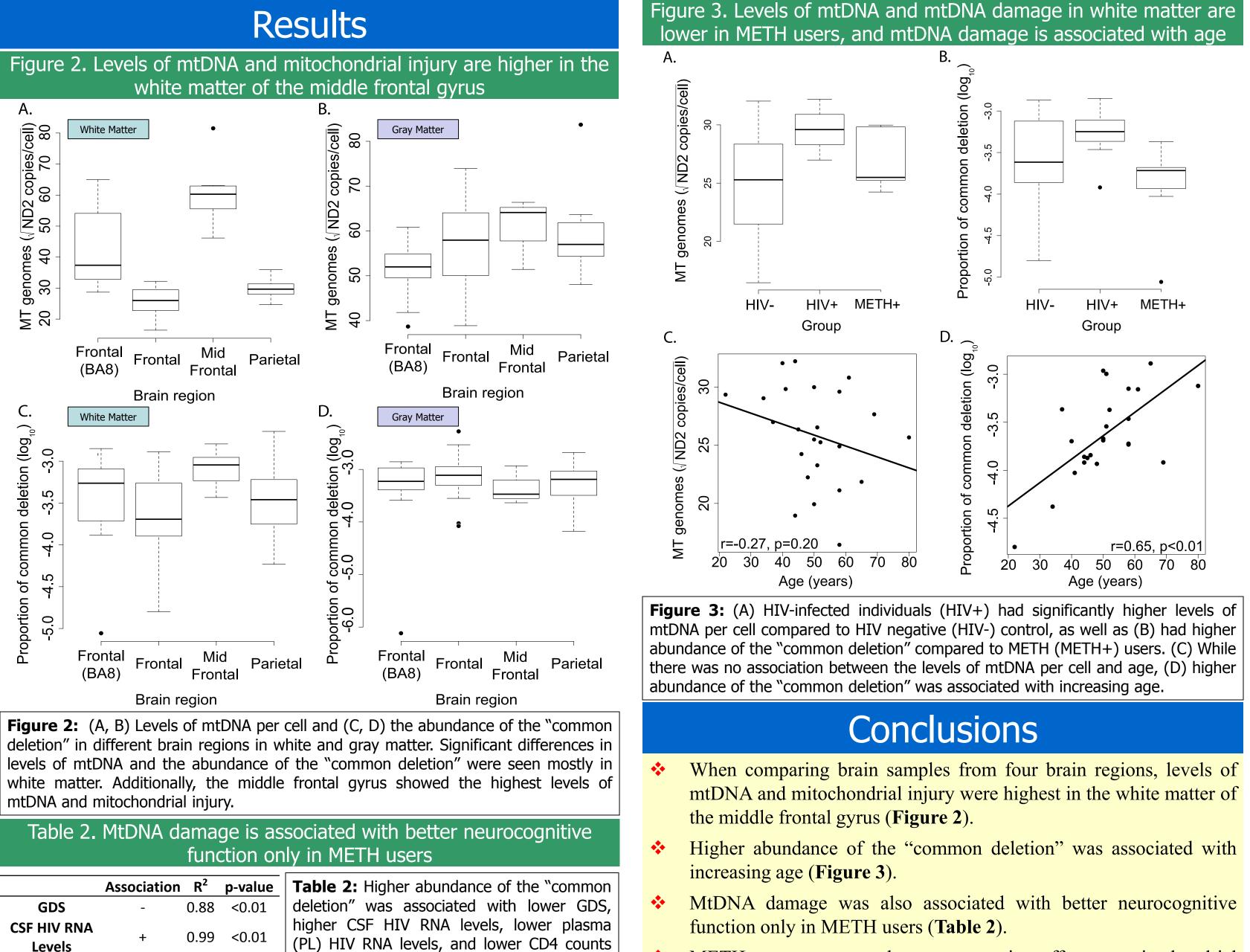


Table 1: Characteristics of our study participants. Median values are shown for each study group. *Represent the p-value of a double-tailed Mann-Whitney or a Fisher test.

Susanna R. Var¹, Tyler R. C. Day¹, Andrej Vitomirov¹, Davey M. Smith^{1, 2}, David J. Moore¹, Virawudh Soontornniyomkij¹, Cristian L. Achim¹, Sanjay R. Mehta^{1, 2}, and Josué Pérez-Santiago¹

Participant characteristics						
HIV-	HIV+	METH+				
n=28)	(n=11)	(n=9)	p-value*			
7:21	2:9	1:8	0.89			
(44.8-58.5)	45 (39.5-51.5)	46 (44-50)	0.19			
-	2.6 (1.53-3.12)	1.70 (1.28 (2.26)	0.25			
	3/11	5/9	0.36			
-	2.50 (1.96-5.66)	2.95 (2.65-4.88)	0.59			
	3/11	0/9	0.22			
-	53 (30.5-104)	25 (7-104)	0.37			
-	0.74 (0.47-1.27)	0.54 (0.23-1.84)	0.90			

mtDNA and mitochondrial injury.

	Association	R ²	p-value	Table 2: Higher abundance of the "common"
GDS	-	0.88	< 0.01	deletion" was associated with lower GDS,
CSF HIV RNA Levels	+	0.99	<0.01	higher CSF HIV RNA levels, lower plasma (PL) HIV RNA levels, and lower CD4 counts
PL HIV RNA Levels	-	0.85	<0.01	in a multivariate analysis, while adjusting for age and brain region. These associations
CD4 Counts	-	0.99	< 0.01	were only found in the METH+ group.

Susanna R. Var, B.S. **Department of Medicine** University of California, San Diego 9500 Gilman Drive San Diego, CA 92093-0679, USA E-mail: srvar@ucsd.edu Phone: (858) 552-8585 Fax: (858) 522-7445

METH use appears to have a protective effect on mitochondrial injury. METH use has been shown to increase autophagy and mediate neuroprotection at low doses.⁶